在屋顶顶部开口的计算工况中,在喷嘴11~19m计算范围内,喷嘴高度11m时排风温度较大。上部开口面积不同,随喷嘴高度变化的变化规律不同,其内在关联还有待于进一步的研究。而排风温度随下开口面积的变化趋势比较显著,随下开口面积增加,排风温度先呈下降趋势,而后随面积的增加,温度趋于稳定。见图3(c)、(d)。
两种不同上部开口形式的计算工况下,侧开排风温度受喷嘴高度的影响较为显著,而随下开口面积的变化其规律较为一致,即:随下开口面积的增加先降后趋于稳定。
3.4 上部开口排风量
在上部侧墙开口的计算工况中,下部开口面积对排风量影响最大,随下部开口面积的增加,排风量线性递增;计算表明,喷嘴高度对排风量的影响不大。见图4(a)、(b)。
在屋顶顶部开口的计算工况中,排风量随下部开口面积增加呈线性递增。而喷嘴高度对其影响不大。见图4(c)、(d)。
两种不同上部开口形式的计算工况下,排风量随喷嘴高度和下开口面积变化的规律极为相似。即:均随下开口面积增加呈线性递增趋势,而随喷嘴高度的变化影响不大。
图4 侧开(a)(b)与顶开(c)(d)排风量/排热量比较
3.5 室内排热量
在上部侧墙开口的计算工况中,喷嘴高度与上部开口的高差对排风温度及其室内排热量影响较大,高差为2m时,开口高度每提高1m,排风温度增加近5℃,排热量则增加60~70kW。而下部开口面积增加,在上部开口面积较小的情况下,排热量下降趋势显著;上部开口面积较大的情况下,随下开口面积增加,排热量有稳定趋势。见图4(a)、(b)。
在屋顶顶部开口的计算工况中,排热量变化规律基本与排风温度相似。即:随上开口面积不同,变化规律不同。而随下部开口面积增加排热量基本呈下降趋势。见图4(c)、(d)。
两种不同上部开口形式的计算工况下,排热量随喷嘴高度变化,侧墙开口变化规律显著,顶部开口不明显;随下开口面积变化规律相似,即:随下开口面积增加,基本呈下降趋势。 4 结论两种不同上部开口形式的在计算工况条件下:
1) 垂直温度分布大致相同,但上部侧墙开口时的垂直温度高于顶部开口时;
2) 空调区温度随喷嘴高度和下开口面积增加均呈上升趋势,但上部侧墙开口时明显高于顶部开口时;
3) 侧墙开口排风温度随喷嘴高度影响较为显著,两者随下开口面积变化的规律趋势较为一致,其量相当;
4) 排风量随下开口面积和喷嘴高度变化的规律极为相似,前者两种开口形式呈线性递增,后者影响不明显;
5) 两者排热量的变化规律与排风温度基本相似。
1.黄晨,李美玲等.采用第一类边界条件数值模拟具有开口的大空间建筑是内速度场与温度场.制冷学报,2002;92:20-24.
2.Chen Huang, Meiling Li, Tao Zuo.CFD Analysis of Airflow and Temperature Fields in a Large Space with Openings.4th. International Conference on IAVECB,Changsha,2001.10;269-276.
3.黄晨,李美玲.大空间建筑室内表面温度对流耦合换热计算.上海理工大学学报,2001;23(4):322-326.
4.黄晨,李美玲,邹志军,肖学勤.大空间建筑室内热环境现场实测及能耗分析.暖通空调,2000;30(6):52-55.
5.C.K.G.Lam, K.Bremhorst,A modified form of the k-e model for predicting wall turbulence.ASME J. Fluids Eng., 1981;103:456-460.
6.Chen Huang, Xin Wang, Jiangang Yang, Wugang Huang .Study of thermal environment characteristics of large space with stratificated air conditioning and openings.2003 International Conference on Energy and the Environment.