再论“空间句法”(4)
作者:佚名; 更新时间:2014-12-05
计算句法变量,所以这种方法亦可看作凸状方法的延伸。可见图解分析与前述各种分析方法的最大差异,就是要先建立规则的点阵。所以,这种方法是从所有点之间的可见性关系中,引出的空间拓扑结构计算。

    泰特美术馆的轴线、凸状和可见图解分析的比较,可看出可见图解的优点主要体现在:(1)对于复杂和开放的建筑平面,很难确定惟一的轴线和凸状画法,而可见图解分析则不会受到这种限制,只需在空间中均匀地排布点;(2)对于相同的平面,只要保持一定的点阵密度,可见图解分析的结果会比轴线、凸状分析更加细致,原来仅用一条轴线或一个凸状表示的空间,可见图解可详细揭示其内部的差异。可见图解分析的最大缺点是计算相当耗时,但随着计算机运算能力的不断增强,只要适当控制取样点的密度,可见图解分析完全可以胜任规模较大的建筑和城市空间分析。

    3.3 以实体的形定义的空间分割方法

    这类方法中,以表面分割(surface partition)和端点分割(endpoint partition)最为著名,它是在1995-1999年,由当时供职于佐治亚理工学院(GIT)的派普内斯(John Peponis)和瓦因曼(Jean Wineman)等学者发展的一套新的空间构形分析方法。

    他们认为,运动是可让我们把复杂空间结构中的不同视点相互联系,并通过直接体验与抽象推理的结合,找回空间描述的操作基础。而人们在运动中感知到的空间信息一般是不连续的,于是人们会根据这种不连续性而把空间系统自然地划分为视觉感知的基本单元。空间分割就是找出这些空间单元的交界之处。派普内斯认为空间信息的不连续是由空间边界的不连续造成的,如墙角、墙的转折点、自由墙体的尽端等。他用这些不连续点将实体边界区分为不同的边,然后,用“能否看到相同的边”来定义空间信息的基本单元,从而廓清建筑实体的形式与空间构形之间的关系。

    表面分割就是通过延伸优角(大于180° 的角)的两边来对空间进行分割,自由墙体的端点可看成360°的优角,所以也要延长,所得分割线是被延伸的“墙表面”可见与不可见的临界之处,所分割成的子空间称为s空间。端点分割就是除了绘出表面分割线之外,再绘出所有可延伸的优角连接线的延长线,其意义是所有“边”的可见与不可见的临界之处,即跨过这条线则原来可见的一条边就看不到了,或看到了一条原来看不到的边,这样分割成的子空间称为e空间。每个e空间都具有“获取信息稳定的”特点,即同一e空间中各点都只能看到相同的边,这就是空间体验的基本单元。

    经端点分割后形成的各单元,从局部获取的视觉信息是不相等的。蓝颜色e空间的视觉信息最少,只能看到4条边,而黄颜色e空间的视觉信息最多,可看到8条边。

    这些子空间的句法变量计算与传统的凸状算法略有不同。简单地根据e 空间之间的连接关系计算出的集成度,难以表达实际意义。派普内斯用可见性来定义空间的连接:如果两个e空间中的各点都能彼此互视,即若存在一个包容这两个 e空间,且不被实体打断的凸状空间,则认为这两个e空间有连接关系。用这种方法判断所有e空间两两之间的关系,继而生成关系图解,然后便可计算各种句法变量。某个e空间的深度值,其意义就是判断从该e空间出发,在视觉上需要多少步才能看遍整个空间系统。

    可以看出,这种表面和端点分割方法比交叠凸状的划分更细,凸状的交叠区域一定是某几个s 空间的并集。端点分割线与前述所有线也有相通之处,但其意义不同,所有线是为了分析视线或运动线的关系,而这种方法则是为了研究由这些分割线划分出的空间。两者在形式上也有差别。左边蓝线是绘出的一条“所有线”,它贯穿整个空间,止于边界;右边红线是在相同位置绘出的端点分割线,它只保留了下半段,因为这半段线才具有“边”的临界可见性质:即在这半段线左边,a和b两条边线皆可见,而在其右边则只能看到b,却看不到a.

    此外,以实体的形定义的构形分析方法还包括核心空间分析、边的视区集成和边界的可见图解分析等,暂不展开。

    3.4 小结和补充

    3.4.1 小结

    空间与实体是相互依存的矛盾统一体。要讨论空间构形就不能撇开对实体的研究。本章讨论的三类空间分割方法都是从可见性关系在空间与实体的相互制约之间,寻找恰当的平衡点和切入点。开头讨论的三种基本的空间分割方法,主要着眼于由实体界定的空间大致结构组成,虽然不能辨别实体边界的微小变动对空间的影响,但更符合人们头脑中简单、明确的空间构形;三种穷尽式的空间分割方法,更加强调由实体边界决定的空间分割的唯一性,也就是说这三种空间分割方法对实体形式的依赖性和敏感度都较强,但分析过程往往比较繁琐;而最后讨论的表面分割和端点分割方法,则更加直接地强调实体边界的转折点、角以及尽端等形式特征对空间构形的影响,定义明确,操作客观,但有时会纠缠于实体几何形式的琐碎干扰,而偏离对空间整体构形的专注。

    在实际分析中,往往根据不同的研究对象和目的选择合适的分析方法。例如,对于街巷布局或大范围城市路网的研究一般采用轴线方法;对于房间界定较为明确的建筑空间,常用凸状方法;对于自由开放的建筑平面多以可见图解来分析……有时,对同一平面还会用多种方法来分析,以充分发掘其潜在的多重构形。

    本章提到了多种与空间分割相关的线。如果把视区也看作通过观察点的无限密集的线的集合,那么,可以看出在对同一空间系统进行分析时,这些线之间的集合关系[15].

    3.4.2 补充:测角修正

    测角修正就是根据人们体验空间的特点,对前述轴线、所有线和可见图解分析等方法进行改进。很多研究表明,转弯角度是影响人们认知空间的重要因素。接近90° 的道路转弯给人的印象很明显,而小于15°的道路转弯通常察觉不到。但是在轴线分析中,即使以很小角度相交的两条轴线,都会被当作像90°相交的两条轴线一样来计算,即都认为产生了一次空间转换。这就会存在一定误差。因此,测角修正主张,在计算前述深度值等形态变量时,根据轴线交接的角度,要乘以适当的加权系数。90°相交的两条轴线,其系数为1,而0°相交的两条轴线,其系数为0,介于0°和90°之间的则为0~1之间的分数。因此,这种计算深度值的方法被称为“分数深度”。a比b的加权系数小,就暗示a中道路转弯不如b给人的印象显著,即a的深度小于b.同样道理,测角加权方法也能用于对可见图解分析的修正。

    应指出,对于规则的方格形建筑和城市的轴线分析,是否用测角加权法修正,其计算结果差别不大,因为其轴线交角多接近90°。而对于变形网格的城市或自由、开放平面的建筑空间分析,则显示出测角加权修正的必要性。

    另外,这种“分数深度”的计算方法,可成功地将城市GIS 数据中的道路中心线,转化为轴线来进行空间句法计算 (Dalton,2003)。多数城市GIS对道路的表达,是基于连接道路交叉点之间的道路中心线。这样,通常在空间句法中用一条轴线来代表的通直道路,在GIS中却表达为多条首尾相接的线段。如果把这些线段作为轴线,用传统的空间句法算法来分析,会发现集成核一般位于城市平面的几何中心,明显与实际不符。但是若采用分数深度的算法,那么沿一条直线排列的线段,会乘以0的加权系数,即会当作一整条线段来计算,这样就与传统的轴线计算结果取得了一致。这种方法在城市的层次上,基本解决了传统轴线生成方法的人工化和不统一性等问题。而且这种方法更为精确,不仅在于道路的微小转折都会被加权处理,而且传统上表达为一条轴线的道路,被交叉口分成不同段来表达,显示出各段在交通、人流、土地使用等方面的不同特征。由此方法编写的“TIGER”

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com