1.目前空调蓄冰的方式很多,主要的有冰盘式、冰球式。本工程采用简便、可靠、性能良好的法国CIAT冰球。它将封闭在一定形状的塑料容器内的液体制成固态冰的装置。其形状为球形,浸在充满乙二醇溶液的贮槽内,冰球内的溶液随着乙二醇的温度变化结冰或融冰。本工程采用的冰球,球壳厚2mm,直径98mm,每m3有效冰球数1221个,潜热133.4KJ/个。
2.整个蓄冰系统由充满冰球的贮冰槽组成,承压为0.035Mpa;整个系统为开式系统。由系统的6#冰槽为定压、膨胀箱。蓄冰槽可采用球型槽,立式槽和卧式槽。在贮同样冷量的情况下,球槽具有体积小、冷量分配均匀及材料最少的特点。但限于本工程的位置条件,我们采用了船型卧式槽,总蓄冷体积为640m3,最大蓄冰量31787.2KW(9040RT)。该槽承压要求小,仅0.035MPa。本工程选用的蓄冰系统是目前北京最大的冰球式冰蓄冷系统。
3.在空调蓄冷方案的选择中,空调制冷主机的选择十分重要。根据运行方式的需要,空调制冷主机必须是双工况的,既能适应空调工况运行又能进行制冰工况运行。根据常用主机有往复式、螺杆式和多级离心式。根据对压缩机制冷机的综合分析,离心式和螺杆式是最具有竞争力的。在小于1060kW(300Rt)时,螺杆机较离心机要有优势,尤其部分负荷时,它的部分负荷综合值较高,所以在制冰时更显出螺杆机的优越性。
本工程采用了单螺杆压缩机,制冷剂采用HCFC22。单螺杆机其结构简单,轴承受力负荷小,运动部件之间无磨损,所以使用寿命长、振动小、制冷效率高。正由于螺杆机的优越性能,在调试过程中,当负荷运行时,单台主机实际耗电300kW。采用双工况的单螺杆机是空调蓄冷模式决定的。
4.蓄冰空调系统流程配置:
蓄冰空调系统在运行过程中有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,系统内的载冷剂(即25%浓度的乙二醇溶液)温度低于冰球内溶液的相变温度,后者内部的溶液便逐步结成冰(或固态物),从而将冷量储存起来。在放冷工况时,系统的载冷剂温度高于冰球内溶液的相变温度,球内的冰(或固态物)融解,将冷量释放出来。
在蓄冰空调系统中,水系统的流程有两种:并联流程和串联流程。
①并联流程系统中制冷机与蓄冰槽处于并联位置,当最大负荷时可以联合供冷。该模式可以实现蓄冰、蓄冷并供冷、融冰供冷、制冷机直接供冷等多种运行工况。
特点:并联流程在发挥制冷机和蓄冰槽的效率方面更为均衡,尤其在部分蓄冰的条件下,泵的能耗比串联流程有所降低。
②串联流程系统中制冷机与蓄冰槽处于串联位置,以一台泵维持系统内的乙二醇溶液循环,供应空调所需的冷量。
特点:串联流程可保持恒定的供冷温度,系统运行稳定,在自控方面也较并联流程简单。
根据系统流程的特点及工程使用的要求,在本工程中采用了串联流程。
5.蓄冰系统设备及流程的选择及配置,只是在节能、移峰填谷、节约投资方面起到一部分的作用;真正做到节约运行成本,同时还应注意系统运行控制的正确方法,应注意以下问题:
①据用户冷负荷的需求,按电费结构的特点,自动设置蓄冷系统最佳的运行方式,降低整个系统的运行费用;
②充分利用蓄冷装置的容量,当日应尽量把所蓄冷量用尽,以发挥夜间机组制冷的能力,减少白天运行的容量。
③自动检测系统的运行状态,保障冰蓄冷系统主要设备正常、安全运行、自动记录系统运行的参数,显示系统运行流程图和打印系统运行参数报表。
七、工程设计施工中应注意的问题及特点:1.蓄冰槽容量不宜过大,会使蓄冰槽因自重变形,必须增加槽的壁厚以及进行加固,还会给制作安装和运输带来困难,同时也增加了费用。在蓄冰槽的扩散管的排布上,会因扩散管的排布过密而浪费大量的空间,还会影响冻冰及融冰的效果。
2.站通常位于大厦的地下部分,而地下部分又往往是停车库、站房、办公集中的部位;使用面积非常紧张、造价昂贵;在蓄冰槽的设置及排布上应尽量使用可利用的空间位置。
3.乙二醇溶液100%的价格大约是7100元/吨,价格昂贵。在系统中,如果因为检修或系统渗漏会造成很大的不必要的经济损失,同时对环境造成污染。在施工中,管道及设备用设立牢固的支、吊架,同时系统应进行严格的严密性试验。如果有可能在乙二醇溶液充注前进行水溶液的试运转,观察整个系统的运转情况;及自控系统的测点及电动阀门的动作配合。
4.蓄冰槽在安装过程中,槽与下面的支撑必须进行隔冷处理,以免局部形成冷桥,槽的本体必须进行绝热保温设计以减少冷损失。乙二醇溶液在蓄冰过程中通常在-2.19℃/-5.56℃范围内,与周围环境的温差大;如果隔热效果不好,在平时的运行中会造成非常大的浪费。所以蓄冰槽的本体的保温厚度应大于标准工况的水的保温厚度,保温层应严密尽量减少冷损失。
5.蓄冰槽无论是立槽还是卧槽在设计中必须考虑载冷剂(即25%的乙二醇溶液)的分配均匀性。在槽的入口和出口设均流管。本工程采用了DN200扩散管,均流管供、回各一根,在系统冻冰及融冰过程中流向相反。将载冷溶液均匀有效地传给槽内蓄冰球。
6.在蓄冰槽的设计中还考虑人孔以便填充球,在填充蓄冰球时,对高于2M的卧槽或立槽,应预先在槽中充入1/3槽的水以减少填球时的冲击使球均匀地填充(由于冰球的密度比水小,冰球浮于水面有利于冰球的扩散);同时水不宜过多,不利于冰球填满整个冰槽(造成冰槽底部无冰球);槽的底部设卸球孔,也可作排污用。
7.在冰蓄冷系统流程中系统与用户的联接方式有直接连接(即整个系统全部充满乙二醇溶液)和间接连接(即乙二醇溶液系统仅限于一定范围内,通过板式换热器与二次水进行热交换)。本工程在设计中采用了间接连接,乙二醇溶液仅限于在制冷机房内循环;外部空调水系统仍是水系统。这种做法有两个好处:
A、乙二醇溶液仅限于制冷机房用,用量少;
B、减少在大楼内部存在因检修和维护造成乙二醇溶液泄漏的问题。
C、尤其是高层建筑能起到隔断高层建筑冷水系统静压以保护空调制冷主机;提高蓄冰系统安全系数,减少乙二醇溶液泄漏概率;减少设备及阀部件承压稀疏的作用。其代价仅仅是增加了一台热交换器。
8.本工程采用了部分蓄冰的控制策略而且是制冷机优先,这样制冷主机的容量可以大大减少,同时也减少了电力增容费,在负荷较低时尽量利用所蓄的冰。
9.在系统设计中还应考虑到:乙二醇溶液受球内介质相变时的影响而体积膨胀,在系统中他的相变膨胀量是2%~9%。为此系统应设置膨胀水箱,而且还设置了溶液补给箱作为膨胀水箱外的溢流箱。在系统亏液或浓度降低时进行补液。
设置溶液补给箱有以下作用:
①既可方便地给系统补充乙二醇溶液,又便于检查乙二醇溶液浓度。
②当蓄冰球相变时,体积膨胀使膨胀箱中的溶液容纳不下而溢流至补给箱
③在系统检修或维护中的补液及乙二醇液体的回收再利用,有利于减少运营成本,以环保要求。
10.蓄冷系统的水处理:乙二醇水溶液系统管路为防止腐蚀,需加防腐剂使钢管内形成保护膜,防腐剂须符合环保要求。
11.阀门的选择上应注意的问题:
①电动调节阀、开关阀门的密闭性能应严格要求;在整个系统冻冰及融冰的过程中,乙二醇侧在一定阶段内会运行在-2.19℃/-5.56℃温度范围内,在板换的另一侧的水通常在7℃/12℃运行;如果板换的乙二醇侧关闭不严有泄漏,会造成板换水一侧结冰,冻裂设备。本工程采用KEYSTONE和SIEMENS的电动蝶阀。
②电动阀门的两侧应设置检修阀