广东星海音乐厅的声学设计(2)
作者:佚名; 更新时间:2014-12-04
暴露在室外,单层230mm厚的钢筋混凝土壳体,具有足够的空气隔声量(基地噪声为67~71dB Leq(A))。但大雨冲击的撞击隔声量却很低,对此做了隔离撞击声的构造,并在实验室内做了测定,其结果表明。实施的构造可以隔离大雨时 的冲击声。
空调系统的消和减振,是大厅获得良好的听闻条件的最基本的保证,开启空调时内噪声不得大于28dBA,也即以听不到的空调噪声为设计指 标。对此,采取了如下措施:
(1) 在空调系统的管路系统内设置阻、抗复合型消场器,减低风机噪声沿管路传至厅内;
(2) 防止气流噪声,限止流速:主风道低于6m/s,支风道低于3。5m/s。出风口低于1。5 m/s。为实现这一目标,采用侧送、局部顶送(演奏 台上方球切面,反射体间),座席地面下回风的方式。
(3) 送风与回风量相适应,也即采用1:1的送回风比例。
(4) 全部空调、制冷设备均作隔振处理,水泵、冷水机组采用SD型橡胶隔振装置;风机采用弹簧隔振器;管道用软接管,并用弹簧吊架。
有关其它的工程设备和需要隔声的构件,均采用常规的做法处理。
三、 交响乐大厅的声学测量和音质调试
在交响乐即将竣工的前后,曾对所有各项声学指标进行了测量,并在竣工后的试用阶段,听取了乐团的意见进行了音质调试。
(一)声学测量
声学测量的内容包括响度、混响时间、早期反射声、声扩散、声场分布、频率响应和噪声第七项。明晰度(声能比)C80和低音比B R(温暖感)是分别根据脉冲响应和混响时间测定的结果计算求得。现将混响时间和早期反射声的测定结果分述如下:
(1)混响时间(RT):
混响时间菜测定了四次,测定频率为63Hz~8000Hz八个倍频程的中心频率。其结果是中频(50Hz)满场为1.82s,空场为2.19s。
(2)早期反射声测定:
早期反射声测定是在演奏台上配置脉冲声源。在大厅的七个区内,选择有代表性的座席测定其反射声序列。时标为100ms,由图内可观察 早期反射声的状况、反射声的时延间隙(t1)和计算求得明晰度C80和C50。在演奏台上声源取2个位置,S1和S2,在厅内各区分别测定27个点。 计54幅图。为压缩篇幅。在图9内列出S1和S2各7个测点结果。由反射声列图见,时延间隙(t1)为3~7ms。
由早期反射声测定结果,可用式(2)求得500Hz,1000Hz和2000Hz三个频率的C80值,然后取其平均值。即C80(3)的值。交响大厅七个区 的明晰度C80(3)求得C50(3)见图10所示。C80(3)的平均值-1.43。
通过声学指标的测定结果表明:交响乐大厅的声学设计达到了预期的指标。
(二)音质调试
声学设计的最终目的是为乐师和听众创造优异的演奏和听闻环境。各项声学参数虽然达到了国际上“顶有”音乐厅的指标,但是能否获得同 等的主观评价呢?对此,,由广州交响乐团进行多次配合演出,召开座谈会,听取各方面的意见,经归纳有如下几点:
·普通反映混响时间长,因而层次不够,清晰度差;
·弦乐器部位(小提琴、中音提琴区)缺乏反射声,得不到演奏台侧墙的支持;
·打击乐和钢管乐声级过高,相应地弦乐声较低,影响乐声的平衡。
根据上述意见,采取了如下的改善措施:
(1) 在演奏台上方的球切面反射上,配置人工翻动的锥状可调吸声结构,使大厅混响时间可在1.66~1.82s之间调节,适应习惯于较短混响条 件下演奏的国内乐团,满足层次和清晰度的要求。可调吸声构造见图11所示,图12为实测可调混响幅度。
(2) 在演奏台两侧凹进的演员入口处,设置凸弧形活动声屏障,增加提琴区的侧向反射声,改善乐师的自我感觉。
(3) 在演奏台和合唱队的两个后墙上,按原设计配置锥关扩散体,并在两个锥面上插入可调吸声板,(一面为七合板,另一面为6mm厚阻燃毯), 用以加强演奏台的声扩散,以及必要时降低打击乐和铜管乐的声级,求得乐声的平衡和融合。
(4) 在堂座走道和演奏台两侧楼梯上设地毯夹,以便在必要时,铺设地毯,进一步降低混响至1.5s。
四、 室内乐厅的声学设计
星海音乐厅室内乐厅是以室内乐演奏为主,兼供戏剧演出、会议和立体声电影所用的多功能厅。容纳462名听众,有效容积3400m3, 每座占容积分7。4m。大厅采用不对称的扇表平面,右侧设在厢座,左侧二层有挑廊,大厅后部设有三排座席的小楼座,大厅的平、剖面见图13所示。 图16为大厅内景。
大厅的不规则形体有助于厅内的声扩散,池座有左侧墙和厢座矮墙提供早期侧向反射声、厢座和楼座主要由吊顶供给早期反射声。
为满足多功能使用的要求,同时使每种功能都有“最佳”的混响时间,故采用计算机调控的可调混响装置。可调的上限值取1.3s,供室内乐 演奏使用;下限值是根据立体声电影的要求,确定为0.8s,故可调幅度为0.5s(0.8~1.3s)。并要求125Hz~400Hz的频率范围内均有接近相同的调辐量。
为了使用人员便于操作,把可调幅度设定为五个档次,即1.3s,1.2s,1.1s,1.0s,和0.8s.,根据选定的方式用计算机在15s内(圆柱体旋转360 0需30s)即可调至要求的混响时间。也可以无级调至幅值范围内的任何一个值。
可调吸声结构采用旋转圆住体和平移的帘幕相结合的形式:圆柱体直径为800mm,一半为反射面,另一半为宽频带吸声面,配置左侧墙的上、 下部位和后墙上,共设29个转体,(侧墙14个,后墙15个);可调帘幕分三道,配置在厢座侧墙木格栅内,共计可调面积为大厅总表面积的十分之一。
室内乐厅内除了可调吸声结构以外,其余的墙面均为25mm厚的木板墙,榉木三合板贴面;木地板;吊顶为轻钢龙骨石膏板刷涂料;座椅采用相 当于听众声吸收的澳大利亚“西贝”(Sebel)公司产品。座垫和椅背可根据需要调节倾角。
室内乐厅的噪声控制同样包括隔声和空调系统的消声和减振两部分。厅内的周墙均为内隔断重墙,屋顶为双层结构,不存在屋面冲击声的问 题。空调系统采用上送、下回的传统方式,消声和减振做法同交响乐大厅。
五、 室内乐厅的声学测量和评价
室内乐厅竣工后曾对设计的八项指标进行了测定。混响时间和早期反射声的测定结果如下:
(1) 混响时间(RT)
混响时间的测定是按设定的五种可调混响方式中三种进行的;即:1)转体和帘幕均为暴露反射面,即厅内具有最长的混响;2)转体和帘 幕吸声面暴露,厅内混响处于最短的情况;3)转体和帘幕的吸声面各暴露一半,即处于1)2)的中间状态。测定结果和测定点配置分别见图14, 最大可调幅度为0。48s (空场)和0.42s(满场)
(2)早期反射声测定:
早期反射声测定结果,可用式(2),式(3)求得500Hz,1000Hz和2000Hz三个频率的C80和C50的值,然后取其平均值:即C80(3),室内乐厅 8测点的C80(3)值为2.55~4.93dB,平均值为3.77dB;C50(3)为-0.02~2.38dB,平均值为1.06dB。
星海音乐厅内乐厅的9项声学指标测定结果表明:全部达到预期效果,该厅在调试期间曾进行了广东省少年钢琴比赛,以及古筝独奏会,无 论是乐师和听众均反映厅内音质效果极佳。
六、 音乐厅声学设计中几个总是的探讨
通过星海音乐厅声学设计的实践和调试、试用过程中我国音乐家们反映的各种意见,笔者认为有些问题值得研讨,以便给今后音乐厅的设计 提供参考。
(一)关于交响乐大厅的“最佳”混响时间
世界著名的传统音乐厅混响时间都比较长。这无疑对我国音乐厅设计有较大的影响。星海音乐厅交响乐大厅的满场混响时间也是参考 了传统音乐厅而确定为1.8s的。
但长的混响时间不适合国情,原因首先是我国的交响
空调系统的消和减振,是大厅获得良好的听闻条件的最基本的保证,开启空调时内噪声不得大于28dBA,也即以听不到的空调噪声为设计指 标。对此,采取了如下措施:
(1) 在空调系统的管路系统内设置阻、抗复合型消场器,减低风机噪声沿管路传至厅内;
(2) 防止气流噪声,限止流速:主风道低于6m/s,支风道低于3。5m/s。出风口低于1。5 m/s。为实现这一目标,采用侧送、局部顶送(演奏 台上方球切面,反射体间),座席地面下回风的方式。
(3) 送风与回风量相适应,也即采用1:1的送回风比例。
(4) 全部空调、制冷设备均作隔振处理,水泵、冷水机组采用SD型橡胶隔振装置;风机采用弹簧隔振器;管道用软接管,并用弹簧吊架。
有关其它的工程设备和需要隔声的构件,均采用常规的做法处理。
三、 交响乐大厅的声学测量和音质调试
在交响乐即将竣工的前后,曾对所有各项声学指标进行了测量,并在竣工后的试用阶段,听取了乐团的意见进行了音质调试。
(一)声学测量
声学测量的内容包括响度、混响时间、早期反射声、声扩散、声场分布、频率响应和噪声第七项。明晰度(声能比)C80和低音比B R(温暖感)是分别根据脉冲响应和混响时间测定的结果计算求得。现将混响时间和早期反射声的测定结果分述如下:
(1)混响时间(RT):
混响时间菜测定了四次,测定频率为63Hz~8000Hz八个倍频程的中心频率。其结果是中频(50Hz)满场为1.82s,空场为2.19s。
(2)早期反射声测定:
早期反射声测定是在演奏台上配置脉冲声源。在大厅的七个区内,选择有代表性的座席测定其反射声序列。时标为100ms,由图内可观察 早期反射声的状况、反射声的时延间隙(t1)和计算求得明晰度C80和C50。在演奏台上声源取2个位置,S1和S2,在厅内各区分别测定27个点。 计54幅图。为压缩篇幅。在图9内列出S1和S2各7个测点结果。由反射声列图见,时延间隙(t1)为3~7ms。
由早期反射声测定结果,可用式(2)求得500Hz,1000Hz和2000Hz三个频率的C80值,然后取其平均值。即C80(3)的值。交响大厅七个区 的明晰度C80(3)求得C50(3)见图10所示。C80(3)的平均值-1.43。
通过声学指标的测定结果表明:交响乐大厅的声学设计达到了预期的指标。
(二)音质调试
声学设计的最终目的是为乐师和听众创造优异的演奏和听闻环境。各项声学参数虽然达到了国际上“顶有”音乐厅的指标,但是能否获得同 等的主观评价呢?对此,,由广州交响乐团进行多次配合演出,召开座谈会,听取各方面的意见,经归纳有如下几点:
·普通反映混响时间长,因而层次不够,清晰度差;
·弦乐器部位(小提琴、中音提琴区)缺乏反射声,得不到演奏台侧墙的支持;
·打击乐和钢管乐声级过高,相应地弦乐声较低,影响乐声的平衡。
根据上述意见,采取了如下的改善措施:
(1) 在演奏台上方的球切面反射上,配置人工翻动的锥状可调吸声结构,使大厅混响时间可在1.66~1.82s之间调节,适应习惯于较短混响条 件下演奏的国内乐团,满足层次和清晰度的要求。可调吸声构造见图11所示,图12为实测可调混响幅度。
(2) 在演奏台两侧凹进的演员入口处,设置凸弧形活动声屏障,增加提琴区的侧向反射声,改善乐师的自我感觉。
(3) 在演奏台和合唱队的两个后墙上,按原设计配置锥关扩散体,并在两个锥面上插入可调吸声板,(一面为七合板,另一面为6mm厚阻燃毯), 用以加强演奏台的声扩散,以及必要时降低打击乐和铜管乐的声级,求得乐声的平衡和融合。
(4) 在堂座走道和演奏台两侧楼梯上设地毯夹,以便在必要时,铺设地毯,进一步降低混响至1.5s。
四、 室内乐厅的声学设计
星海音乐厅室内乐厅是以室内乐演奏为主,兼供戏剧演出、会议和立体声电影所用的多功能厅。容纳462名听众,有效容积3400m3, 每座占容积分7。4m。大厅采用不对称的扇表平面,右侧设在厢座,左侧二层有挑廊,大厅后部设有三排座席的小楼座,大厅的平、剖面见图13所示。 图16为大厅内景。
大厅的不规则形体有助于厅内的声扩散,池座有左侧墙和厢座矮墙提供早期侧向反射声、厢座和楼座主要由吊顶供给早期反射声。
为满足多功能使用的要求,同时使每种功能都有“最佳”的混响时间,故采用计算机调控的可调混响装置。可调的上限值取1.3s,供室内乐 演奏使用;下限值是根据立体声电影的要求,确定为0.8s,故可调幅度为0.5s(0.8~1.3s)。并要求125Hz~400Hz的频率范围内均有接近相同的调辐量。
为了使用人员便于操作,把可调幅度设定为五个档次,即1.3s,1.2s,1.1s,1.0s,和0.8s.,根据选定的方式用计算机在15s内(圆柱体旋转360 0需30s)即可调至要求的混响时间。也可以无级调至幅值范围内的任何一个值。
可调吸声结构采用旋转圆住体和平移的帘幕相结合的形式:圆柱体直径为800mm,一半为反射面,另一半为宽频带吸声面,配置左侧墙的上、 下部位和后墙上,共设29个转体,(侧墙14个,后墙15个);可调帘幕分三道,配置在厢座侧墙木格栅内,共计可调面积为大厅总表面积的十分之一。
室内乐厅内除了可调吸声结构以外,其余的墙面均为25mm厚的木板墙,榉木三合板贴面;木地板;吊顶为轻钢龙骨石膏板刷涂料;座椅采用相 当于听众声吸收的澳大利亚“西贝”(Sebel)公司产品。座垫和椅背可根据需要调节倾角。
室内乐厅的噪声控制同样包括隔声和空调系统的消声和减振两部分。厅内的周墙均为内隔断重墙,屋顶为双层结构,不存在屋面冲击声的问 题。空调系统采用上送、下回的传统方式,消声和减振做法同交响乐大厅。
五、 室内乐厅的声学测量和评价
室内乐厅竣工后曾对设计的八项指标进行了测定。混响时间和早期反射声的测定结果如下:
(1) 混响时间(RT)
混响时间的测定是按设定的五种可调混响方式中三种进行的;即:1)转体和帘幕均为暴露反射面,即厅内具有最长的混响;2)转体和帘 幕吸声面暴露,厅内混响处于最短的情况;3)转体和帘幕的吸声面各暴露一半,即处于1)2)的中间状态。测定结果和测定点配置分别见图14, 最大可调幅度为0。48s (空场)和0.42s(满场)
(2)早期反射声测定:
早期反射声测定结果,可用式(2),式(3)求得500Hz,1000Hz和2000Hz三个频率的C80和C50的值,然后取其平均值:即C80(3),室内乐厅 8测点的C80(3)值为2.55~4.93dB,平均值为3.77dB;C50(3)为-0.02~2.38dB,平均值为1.06dB。
星海音乐厅内乐厅的9项声学指标测定结果表明:全部达到预期效果,该厅在调试期间曾进行了广东省少年钢琴比赛,以及古筝独奏会,无 论是乐师和听众均反映厅内音质效果极佳。
六、 音乐厅声学设计中几个总是的探讨
通过星海音乐厅声学设计的实践和调试、试用过程中我国音乐家们反映的各种意见,笔者认为有些问题值得研讨,以便给今后音乐厅的设计 提供参考。
(一)关于交响乐大厅的“最佳”混响时间
世界著名的传统音乐厅混响时间都比较长。这无疑对我国音乐厅设计有较大的影响。星海音乐厅交响乐大厅的满场混响时间也是参考 了传统音乐厅而确定为1.8s的。
但长的混响时间不适合国情,原因首先是我国的交响
上一篇:二十一世纪初的中国造价工程师
下一篇:当代中国建筑艺术