变压器励磁涌流产生机理及抑制措施探讨(2)
作者:佚名; 更新时间:2013-10-03
3、抑制措施
对于现场中常用的三相电力变压器,防止变压器励磁涌流引起差动保护的措施主要有以下几类。
3.1 采用速饱和中间变流器
差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能够减少非周期分量造成的保护误动,如BCH-2型就是一种增强型速饱和中间变流器的差动保护。这种差动保护的核心部分是带短路线圈的饱和中间变流器和差动电流继电器。短路线圈的存在使得在具有非周期分量电流时继电器的动作电流大为增加,从而提高了躲避励磁涌流和外部短路时暂态不平衡电流的性能。采用BCH-2型差动保护要注意短路线圈匝数的确定匝数愈多躲避涌流的性能愈好,但内部短路时继电器的动作延时就长。对中小型变压器,由于励磁涌流倍数大,内部故障时非周期分量衰减快,对保护动作要求又较低,一般选较大的匝数,而对大型变压器,内部涌流倍数小,非周期分量衰减慢,又要求保护动作快,则应选较小的匝数。最后选用的抽头是否合适,应经变压器空投试验来确定。同时,灵敏度检验应按内部短路时最小短路电流来进行。如不满足要求,则应选带制动特性的差动保护。与BCH-2型原理相同的还有DCD-2型差动继电器构成的差动保护。
总的来说,带速饱和原理的纵差保护由于动作电流大,灵敏度低,并且在变压器内部故障时,会由于非周期分量的存在而延迟动作,已逐步被淘汰。
3.2 二次谐波制动
依照励磁涌流中含有二次谐波的特点,设计了二次谐波制动的方法,一旦保护检测到差流中含有的二次谐波大于保护整定值,就闭锁保护继电器,防止励磁涌流引起保护动作。二次谐波制动的动作判据可写为: (4)
其中,和分别为差流中的基波和二次谐波分量的幅值,为二次谐波制动比。现场应用时,根据运行经验和空载合闸试验,一般按照躲过各种励磁涌流下,最小的二次谐波含量整定。一般而言,二次谐波制动比可设为(15%,20%)。
二次谐波制动的差动保护原理简单,调试简便,灵敏度高,在当前变压器纵差保护中应用广泛。但是,在安装有静止无功补偿装置等电容分量比较大的系统,故障暂态电流中也有较大的二次谐波含量,致使差动保护动作速度受到影响。若空载合闸前变压器已经存在故障,合闸后故障相为故障电流,非故障相为励磁涌流,采用三相或门制动的方案时,差动保护必将被闭锁。由于励磁涌流衰减很慢,保护的动作时间可能会长达数百毫秒。这也是二次谐波制动方法的主要缺点。
3.3 间断角鉴别的方法
前面提到,在最初几个波形中,涌流将出现间断角。而变压器内部故障时流入差动继电器的稳态差电流是正弦波,不会出现间断角。间断角鉴别的方法就是利用这个特征鉴别励磁涌流和故障电流,即通过检测差电流波形是否存在间断角,当间断角大于整定值时将差动保护闭锁。间断角制动的保护整定值一般设为65°。对于Y/d接线方式的三相变压器,非对称涌流的间断角比较大,间断角闭锁元件能够可靠的动作,并且裕量充足;而对称性涌流的间断角会小于65°。进一步减小整定值并不是好的方法,因为整定值太小会影响内部故障时的灵敏度和动作速度。由于对称性涌流的波宽等于120°,而故障电流(正弦波)的波宽为180°,因此在间断角判据的基础上再增加一个反应波宽的辅助判据,在波宽大于140°(有20°的裕量)时也将差动保护闭锁。间断角原理由于采用按相闭锁的方法,在变压器合闸于内部故障时,能够快速动作。这一点是比二次谐波制动(三相或门制动)方法优越的地方。对于大型变压器,可以同时采用两种原理的纵差动保护,能够起到优势互补,加快内部故障的动作速度,不失为一种好的配置方案。
参考文献
[1]王维俭.电气主设备继电保护原理与运行[M].北京:中国电力出版社,1996.
[2]王维俭,候炳蕴.大型机组继电保护理论基础[M].北京:中国电力出版社,1989.
对于现场中常用的三相电力变压器,防止变压器励磁涌流引起差动保护的措施主要有以下几类。
3.1 采用速饱和中间变流器
差动保护按照躲开最大不平衡电流进行整定时,带速饱和原理的差动保护能够减少非周期分量造成的保护误动,如BCH-2型就是一种增强型速饱和中间变流器的差动保护。这种差动保护的核心部分是带短路线圈的饱和中间变流器和差动电流继电器。短路线圈的存在使得在具有非周期分量电流时继电器的动作电流大为增加,从而提高了躲避励磁涌流和外部短路时暂态不平衡电流的性能。采用BCH-2型差动保护要注意短路线圈匝数的确定匝数愈多躲避涌流的性能愈好,但内部短路时继电器的动作延时就长。对中小型变压器,由于励磁涌流倍数大,内部故障时非周期分量衰减快,对保护动作要求又较低,一般选较大的匝数,而对大型变压器,内部涌流倍数小,非周期分量衰减慢,又要求保护动作快,则应选较小的匝数。最后选用的抽头是否合适,应经变压器空投试验来确定。同时,灵敏度检验应按内部短路时最小短路电流来进行。如不满足要求,则应选带制动特性的差动保护。与BCH-2型原理相同的还有DCD-2型差动继电器构成的差动保护。
总的来说,带速饱和原理的纵差保护由于动作电流大,灵敏度低,并且在变压器内部故障时,会由于非周期分量的存在而延迟动作,已逐步被淘汰。
3.2 二次谐波制动
依照励磁涌流中含有二次谐波的特点,设计了二次谐波制动的方法,一旦保护检测到差流中含有的二次谐波大于保护整定值,就闭锁保护继电器,防止励磁涌流引起保护动作。二次谐波制动的动作判据可写为: (4)
其中,和分别为差流中的基波和二次谐波分量的幅值,为二次谐波制动比。现场应用时,根据运行经验和空载合闸试验,一般按照躲过各种励磁涌流下,最小的二次谐波含量整定。一般而言,二次谐波制动比可设为(15%,20%)。
二次谐波制动的差动保护原理简单,调试简便,灵敏度高,在当前变压器纵差保护中应用广泛。但是,在安装有静止无功补偿装置等电容分量比较大的系统,故障暂态电流中也有较大的二次谐波含量,致使差动保护动作速度受到影响。若空载合闸前变压器已经存在故障,合闸后故障相为故障电流,非故障相为励磁涌流,采用三相或门制动的方案时,差动保护必将被闭锁。由于励磁涌流衰减很慢,保护的动作时间可能会长达数百毫秒。这也是二次谐波制动方法的主要缺点。
3.3 间断角鉴别的方法
前面提到,在最初几个波形中,涌流将出现间断角。而变压器内部故障时流入差动继电器的稳态差电流是正弦波,不会出现间断角。间断角鉴别的方法就是利用这个特征鉴别励磁涌流和故障电流,即通过检测差电流波形是否存在间断角,当间断角大于整定值时将差动保护闭锁。间断角制动的保护整定值一般设为65°。对于Y/d接线方式的三相变压器,非对称涌流的间断角比较大,间断角闭锁元件能够可靠的动作,并且裕量充足;而对称性涌流的间断角会小于65°。进一步减小整定值并不是好的方法,因为整定值太小会影响内部故障时的灵敏度和动作速度。由于对称性涌流的波宽等于120°,而故障电流(正弦波)的波宽为180°,因此在间断角判据的基础上再增加一个反应波宽的辅助判据,在波宽大于140°(有20°的裕量)时也将差动保护闭锁。间断角原理由于采用按相闭锁的方法,在变压器合闸于内部故障时,能够快速动作。这一点是比二次谐波制动(三相或门制动)方法优越的地方。对于大型变压器,可以同时采用两种原理的纵差动保护,能够起到优势互补,加快内部故障的动作速度,不失为一种好的配置方案。
参考文献
[1]王维俭.电气主设备继电保护原理与运行[M].北京:中国电力出版社,1996.
[2]王维俭,候炳蕴.大型机组继电保护理论基础[M].北京:中国电力出版社,1989.