浅谈全电流不停电启、停槽技术的研究与应用(2)
作者:佚名; 更新时间:2014-12-03
3 可行性分析
290kA电解槽以往通槽都将负荷压到10kA后,再进行短路口操作(操作时,短路口的电压降到2V以下)。如果用两个气缸顶住短路口10个接触面中的4个(相当于4个大分流),同时再增加小分流的数量,这样,短路口其余6个面的压降就相当小,人工操作即可将其打开,然后,用气缸把压住的4个面也打开,就能实现对电解槽不停电通槽。可采用不压负荷的通槽方法。
3.1 分流量的大小按50%进行计算。
3.2 气缸的选型:行程>100mm 拉力>1000kg/cm2工作压力>0.6MPa。
3.3 将装置接上气源、电源,在未接入母线回路的槽上进行动作试验,观察动作是否良好。
3.4 在准备通电的槽上加装大分流,安装好装置,将负荷压到200kA,观察效果是否良好。如不打火花且冲击电压在2.5V以内,则进行第2次实验;将负荷压到250kA,再次观察,冲击电压在2.7V以内;可以进行第3次不压负荷,冲击电压在2.8V以内,短路口不再出现火花,即证明实验成功。
4 应用后的效益分析
4.1 节能效果(减少效应) 在应用不停电启动电解槽技术前,信捷职称论文写作发表网,电解槽启动和停槽均需要系列停电或降低系列负荷(降至10kA)后再进行操作,每一次操作需要30min。这不仅影响系列运行的稳定性,造成减产,又增加了阳极效应。每次启动至少增加效应30个。这里所谓效应系数,定义为每天(24h)发生阳极效应的频率(次数);每个效应电压升高30V;效应时间为6min。电解槽设计寿命为1500~1800d,就是说,电解槽至少每5a需要重新砌槽一次。意味着每年有20%的电解槽要停槽大修重新启动。不停电通槽技术操作已经作为一项工艺规程编入了公司技术规范,在以后的电解生产中熟练应用。公司现有268台电解槽,每年的停槽大修量有54台,每年要进行不停电操作108次,每年节约电耗:
单槽启动节电:290×0.1×30×30=26100kWh
大修启、停槽节电:26100×108=2818800kWh(1)
新槽启动节电,则:26100×184=4802400kWh(2)
(1)+(2)=7621200kWh
折合标煤:7621200×0.35/1000=2667.42t
4.2 增产效益 如停电通槽或降负荷通槽的每天按30min计算,平均电流按150kA,电流效率按93%计算,与不降负荷通槽相比,则少产铝为:(290kA×0.3356g/A.h×0.5h×184台×0.93-150 kA×0.3356×0.5h×184台×0.93)×46次=184.92t。
每吨按2万元算,不降负荷通槽多出产值:
184.92×20000=3698400元
若把全电流不停电启、停槽技术在全国进行推广普及应用,其效益非常巨大。
5 结语
要使铝电解生产取得很好的性能指标,不仅要保持技术条件的平稳性,而且要建立良好的热平衡,同时,要最大限度减少无效电压,提高电流效率,以有效降低吨铝电耗。平稳的电解生产是各项技术条件综合作用的结果,各项技术条件之间存在着一定关系。某一项条件发生变化,其他条件也会随之改变,并且发生病槽后电流效率下降,电耗增高。所以,确保技术条件的平稳性,最大限度提高电流效率,可以很好降低吨铝电耗。全电流不停电启、停槽技术的成功应用是电解铝生产工艺的一次突破。