电力系统的安全稳定性研究(2)
作者:佚名; 更新时间:2014-12-03

  数据仓库具有如下四个重要的特点:(1)面向主题:主题是在一个较高层次上将数据进行综合、归类并进行分析利用的抽象。面向主题的数据组织方式,就是在较高层次上对分析对象的数据的完整、一致的描述,能统一地刻画各个分析对象所涉及的各项数据,以及数据之间的关系。(2)集成的:由于各种原因,数据仓库的每个主题所对应的数据源在原有的分散数据库中通常会有许多重复和不一致的地方,而且不同联机系统的数据都和不同的应用逻辑绑定,所以数据在进入数据仓库之前必须统一和综合,这一步是数据仓库建设中最关键、最复杂的一步。(3)不可更新的:与面向应用的事务数据库需要对数据作频繁的插入、更新操作不同,数据仓库中的数据所涉及的操作主要是查询和新数据的导入,一般不进行修改操作。(4)随时间不断变化的:数据仓库系统必须不断捕捉数据库中变化的数据,并在经过统一集成后装载到数据仓库中。同时,数据仓库中的数据也有存储期限,会随时间变化不断删去旧的数据,只是其数据时限远比操作型环境的要长,操作型系统的时间期限一般是6090天,而数据仓库中数据的时间期限通常是5-10年。
  
  (二)运用数据挖掘技术挖掘电力系统中潜在的有用信息
  数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
  数据挖掘的功能和目标是从数据库中发现隐含的、有意义的知识,它主要具备以下五大功能:(1)概念描述。概念描述就是对某类对象的内涵进行描述,并概括这类对象的有关特征。概念描述分为特征性描述和区别性描述,前者描述某类对象的共同特征,后者描述不同类对象之间的区别。(2)关联分析。数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。(3)聚类。数据库中的记录可被化分为一系列有意义的子集,即聚类。聚类增强了人们对客观现实的认识,是概念描述和偏差分析的先决条件。聚类技术的要点是,在划分对象时不仅考虑对象之间的距离,还要求划分出的类具有某种内涵描述,从而避免了传统技术的某些片面性。(4)自动预测趋势和行为。数据挖掘技术能够自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接地由数据本身得出结论。(5)偏差检测。数据库中的数据常有一些异常记录,从数据库中检测这些偏差意义重大。偏差包括很多潜在的知识,如分类中的反常实例、不满足规则的特例、观测结果与模型预测值的偏差等。
  
  (三)运用基于风险的暂态稳定评估方法增强对电力系统安全稳定性的评价及控制
  基于风险的暂态稳定评估方法首先对评估系统的暂态安全风险逐个元件进行分析,然后综合给出相应的风险值。这种评估方法不仅可以分析稳定概率性,也可以定量地分析失稳事件的严重性,即事故对系统所造成的后果。它能有效地把稳定性和经济性很好地联系在一起,给出系统暂态稳定风险的指标,并在一定程度上提高输电线路的传输极限,这将有利于增加社会效益。
  
  参考文献
  [1]张建平、陈峰,《福建电力系统安全稳定性研究》,载《福建电力与电工》2001,4.
  [2]潘星、张建平,《变频器广泛应用对电力系统的影响》,载《变频器世界》2006,8.
核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com