纳米结构材料在锂离子电池中的应用进展(2)
作者:佚名; 更新时间:2014-12-03
表2:负极材料特性表

种类

重量能量密度
﹝ mAh/g ﹞

理论值
﹝mAh/g﹞

石墨

天然和人工

320 ~ 340

372

类石墨

240 ~ 360

非石墨

焦碳

180 ~ 220

***

碳黑

150 ~ 280

***

锂金属

 

966

353

    表3:电解液材料

溶剂

碳酸丙烯酯 PC ﹝Propylene Carbonate﹞

碳酸乙烯酯 EC ﹝Ethylene Carbonate﹞

碳酸二甲酯 DEC ﹝Dimethyl Carbonate﹞

甲酯 Propiolic Acid

1,4 – 丁丙酯 GBL ﹝γ- Butyrolactone﹞

溶质

LiPF6 ﹝主要﹞

LiBF4

LiClO4

LiAsF6

LiCF3SO3


    国内外锂电池生产企业
 
    国内的中信国安盟固利、余姚金和、杉杉科技、国泰华荣等厂商在正极材料、负极材料、电解液市场竞争力逐渐增强,而在隔离膜市场还需奋起直追。在下游锂电池市场,深圳比亚迪、深圳比克、深圳邦凯科技、TCL金能等厂商已在全球锂电池市场占据相当大的市场份额。中国已形成锂电池相对完整的产业链,在锂电池材料的配套方面占有一定的优势。
 
    国外主要锂电池生产商及其产品见下表。

    表4:国外主要锂电池生产商及其产品

企业

产品

SANYO

Lithium Ion Batteries

Battery Engineering

Lithium Thionyl Chloride Cells

EEMB

Lithium Thionyl Chloride Batteries

Li-ion Button Batteries

Lithium Manganese Dioxide Cells

Panosonic

Lithium Ion Batteries

GS

Lithium Ion Batteries

Sonnenschein

Lithium Thionyl Chloride Batteries

Lithium Manganese Dioxide Batteries

WG

Lithium Thionyl Chloride Cells VHT200

Lithium Thionyl Chloride Cells QTC85

Lithium Bromine Complex Cells BCX72

Lithium Sulfuryl Chloride Cells CSC93

Lithium Sulfuryl Chloride Cells PMX150

Lithium Sulfuryl Chloride Cells PMX165

 


    参考文献

    [1] 吴宇平等著,锂离子电池,化学工业出版社,2004
 
    [2] Mao, O. & Dahn,J. R. Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423-427 (1999).
 
    [3] Graetz et al. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194-197 (2003).
 
    [4] Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154-156 (2003).
 
    [5] Novak, P. et al. in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9 (2004).
 
    [6] Armstrong, A. R. et al. Lithium intercalation intoTiO2-B nanowires. Adv. Mater. 17 ,  862 - 865 (2005)
 
    [7] Green, M. et al. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75-79 (2003).
 
    [8] Yang Z H , Wu H Q . [J ] . Chemical Physisc Letters , 2001 , 343 : 235-240.
 
    [9] Frackowia K E , Gautie R S , Garche R H , et al . [J ] . Carbon , 1999 , 37 ,61-69.
 
    [10] Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3. J. Electrochem. Soc. 150, A133-139 (2003).
 
    [11] 郑雪萍,曲选辉,锂离子电池正极材料LiMn2O4研究现状,稀有金属快报,2005.
 
    [12] Dong, W, et al. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457-459 (2000)
 
    [13] Robertson, A. D. et al. Layered LixMnyCo1-yO2 intercalation electrodes: inß uence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380-2386 (2001).
 
    [14] Kang, S. H. et al. Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater. 13, 1758-1764 (2001).
 
    [15] Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature and high rates. Electrochem. Solid-State Lett. 4, A170-172 (2001).
 
    [16] Croce, F. et al. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456-458 (1998).
 
    [17] Hawett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efÞ ciency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97-101 (2004).
 
    [18] MacGlashan, G.et al. The structure of poly(ethylene oxide)6:LiAsF6. Nature 398, 792-794 (1999).
 
    [19] Gadjourova, Z. et al. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520-523 (2001).
 
    [20] Christie, A. M. et al. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50-53 (2005).
 
    [21] ANTONINO SALVATORE ARICÒ, et al. Nature Materials 4, 366–377 (2005)

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com