Li等[35]利用化学沉淀法制备Mg(OH)2-rGO复合物(MGC),Mg(OH)2的存在将有效地抑制石墨烯片层的聚集,有助于石墨烯保持多孔的结构和高比表面积,通过静电相互作用,对水体中MB分子进行高效快速地吸附。同时复合物MGC很容易从水体中分离及利用乙醇使MGC脱附,从而达到重复使用的目的。复合物MGC的合成线路如图3所示。
Li等[36]利用水合肼还原氧化石墨烯和NiCl2制备磁性Ni-rGO纳米复合材料,此复合物在4h内对污染物中的有机染料MB和RhB进行完全吸附,展现了很好的吸附潜力。也有学者开始研究更加绿色环保的合成方法,Wang等[37]利用生物相容性好的多聚糖琼脂(AG),作为稳定剂和物理交联剂进行还原氧化石墨烯,在95℃水浴锅中合成石墨烯-琼脂复合物(RGO-AG),不仅使吸附剂具有很好的生物相容性,而且在强酸、强碱、磷酸盐缓冲剂溶液、有机溶剂中浸泡1周,其完整性很好,保持稳定状态。RGO-AG对有机染料有很好的吸附作用和抗菌性,在吸附孔雀绿有机染料(MG)的实验中吸附12h后,吸附率达到100%,最大吸附量达到242mg/g.
其反应的机理为三苯代甲烷构成了MG分子的支柱,其中3个苯基中心的碳碳键可以自由地在溶液中旋转,当MG分子接触到RGO-AG吸附剂时,石墨烯较大的比表面积及疏松的孔径将制约MG分子的旋转,增强了π-π的作用,结合静电力的作用,使RGO-AG对MG有机物进行高效的吸附。
2.2.3吸附有毒气体
近年来,空气污染越发严重,污染物包括有毒气体和微粒,如氮氧化物、SO2、H2S、NH31化合物是最重要的气态污染物,吸附法是去除有毒气体的重要方法[38].
Liang等[39]利用一步法合成石墨烯复合物(MGA),在合成的过程中,利用聚乙烯亚胺(PEI)作为还原剂,不仅有助于氢键与氧化石墨烯的连接,还原得到的石墨烯有大的比表面积,而且引进氨基团在吸附甲醛有毒气体方面有很好的前景。
研究发现引进胺基团的MGA在吸附有毒气体甲醛方面,MGA上的胺基团会选择性地与甲醛进行结合,在MGA吸附甲醛的实验中,在反应进行5min时,甲醛气体被快速吸附,接近吸附饱和量,吸附能力达到2.43mg/g,与其它胺化碳基材料相比,吸附量达到更大[40].合成MGA的线路图如图4所示。
MGA表现出更好的吸附性质主要归功于:(1)氧化石墨烯和PEI有效的结合,制备的MGA比表面达到139.7m2/g,相比以往报道的石墨烯复合物的比表面积更大[41],提供更多的活跃吸附位点;(2)通过使用PEI作为还原剂制备MGA吸附剂,引入胺基团,提供了化学吸附位点,从而提高MGA吸附MGA表现出更好的吸附性质主要归功于:(1)氧化石墨烯和PEI有效的结合,制备的MGA比表面达到139.7m2/g,相比以往报道的石墨烯复合物的比表面积更大[41],提供更多的活跃吸附位点;(2)通过使用PEI作为还原剂制备MGA吸附剂,引入胺基团,提供了化学吸附位点,从而提高MGA吸附甲醛气体的能力;(3)MGA材料具有连续的孔隙结构,为甲醛气体分子吸附到吸附剂上提供了更好的运动渠道。因此,可以看出,新型石墨烯复合物(MGA)整个合理的结构合成,展现出完美的内部构造,在吸附有毒气体(甲醛)方面展现出新的趋势,进一步开创了石墨烯在吸附领域的发展。
随着石墨烯的研究与探索,石墨烯在吸附有毒气体方面的研究引起了学者的兴趣,Ganji等[42]利用掺杂的方法在石墨烯片上引入铂,利用密度泛函理论计算得到铂掺杂的石墨烯片拥有更大的结合能、静电荷转移量,在吸附有毒气体H2S时,能有效的利用复合物的结合能将H2S分子稳定的绑定Pt原子在石墨烯片上,达到去除有毒气体的效果。Zhang等[43]研究了Fe原子与石墨烯的掺杂,Fe原子的引入可以显着提高H2S与石墨烯复合物之间的相互作用,最后将气体H2S分离成S和H2.
目前,这些碳纳米材料是最有前途的去除有毒气体的吸附剂,对单纯石墨烯进行一定的改性,添加其它材料,提高复合物的综合性,从而更好地对环境中的有毒气体进行去除,达到净化空气的要求。
3、结语
石墨烯是sp2杂化的碳原子形成的单原子层厚度,排列成二维蜂窝状的晶体。具有优异的物理和化学性质、较大的表面积和较低的制备成本等优势,但其自身的分散性较差直接制约在水溶液中的应用,发展石墨烯复合物是一个新的视角,通过添加一种或一种以上其它材料组合而成的材料,在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料,从而满足不同的应用需求,推动石墨烯在实际生活中的应用。
总之,石墨烯作为一种非常有潜力的吸附剂,在处理水污染物中的重金属离子,有机污染物等,通过离子交换、静电作用及π-π键的结合作用,有很好的吸附效果,对它进行复合改性,使其具有良好的生物相容性及稳定性,更能促进其吸附的性能,已成为处理污染物的研究热点,然而实现高效率,高稳定性的石墨烯及其复合物作为吸附剂的工业化应用,仍需要研究者的共同努力。同时,石墨烯及石墨烯复合物等材料在吸附水中的重金属离子、有机污染物问题,吸附有毒气体的反应机理目前还不是很清楚,从机理上解释吸附反应的进行,仍是研究上的一个新突破,石墨烯及其复合物在实际生活中的大量、广泛、高效的应用,真正满足实际需要,仍需学者继续研究发展。
参考文献:
[1]ZhangY,CausserandC,AimarP,etal.Removalofbis-phenolAbyananofiltrationmembraneinviewofdrinkingwaterproduction[J].WaterResearch,2006,40(20):3793-3799.
[2]El-NaasMH,Al-MuhtasebSA,MakhloufS.Biodegrada-tionofphenolbyPseudomonasputidaimmobilizedinpolyvi-nylalcohol(PVA)gel[J].JournalHazardMaterials,2009,164(2-3):720-725.
[3]XiongZG,ZhangLL,MaJZ,etal.Photocatalyticdegra-dationofdyesovergraphene-goldnanocompositesundervisi-blelightirradiation[J].ChemicalCommunications2010,46(33):6099-6101.
[4]DongY,WuDY,ChenXC,etal.AdsorptionofbisphenolAfromwaterbysurfactant-modifiedzeolite[J].JournalofColloidandInterfaceScience,2010,348(2):585-590.
[5]CaiZY,XiongZG,LuXM,etal.Insitugold-loadedti-taniaphotoniccrystalswithenhancedphotocatalyticactivity[J].JournalofMaterialsChemistryA2014,2(2):545-553.
[6]CaiZY,TengJH,XiongZG,etal.FabricationofTiO2binaryinverseopalswithoutoverlayersviatheSandwich-Vacuuminfiltrationofprecursor[J].Langmuir,2011,27:5157-5164.
[7]ZhangZ,XiaoF,GuoY,etal.One-potself-assembledthree-dimensionalTiO2-graphenenhydrogelwithimprovedad-sorptioncapacitiesandphotocatalyticactivities[J].AppliedMaterials&Interfaces,2013,5(6):2227-2233.