1.3指标值的确定及归一化处理
在上述55个三级指标中,有定性指标和定量指标之分。根据指标的评价准则又可分为3类指标:正向指标、负向指标和优化指标。由于不同的指标从不同侧面反映电力企业信息化水平,指标之间又由于量纲不同,所以无法进行比较。因此,为了便于最终评价值的确定,需要对各指标进行无量纲化处理,即对评价指标做标准化、正规化处理,以便消除指标量纲的影响。考虑神经网络训练的收敛问题,对所有指标分3种情况进行无量纲化处理。
(1)定性指标。定性指标有工程建设情况、信息安全措施、信息安全制度的完善程度、信息安全制度的执行情况、企业职工IT素质等。这些指标的评价值采用专家打分的办法进行评价,取值为0.0~1.0之间。
(2)正向定量指标。是指标值越大越好的指标,包括:设备的运行率、安全运行时间、物资供应保障率、劳动生产率、网络覆盖率、联通率等。因这类指标越大越好,故选用所有电力企业的最大值为该指标的理想值,进行无量纲化处理。
(3)负向定量指标。是指其值越小越好的指标,包括采购成本、生产成本、平均响应时间等。这类指标是越小越好,因此,选取所有电力企业的最小值为该指标的理想值,并进行无量纲化处理。
(4)优化指标。是指标具有一个最优的取值范围,太大或太小都不好的指标,包括电力企业资产负债率指标,该指标如果太大说明企业在信息化投资建设中将会出现资不抵债的情况,不利于电力企业的发展;如果该指标值很小则说明在企业信息化建设中没有发挥有限资本的价值。一般该指标取40%~60%比较理想,然后进行无量纲化处理。无量纲化处理方法如下:
(1)有量纲向无量纲的转化。采取一种二次抛物偏大型分布的数学模型描述:
(2)无量纲指标的处理。采取线性递增函数进行描述:
2电力企业信息化水平评价的神经网络专家系统
2.1 BP神经网络的基本原理
人工神经网络(ANN)是由大量简单的处理单元组成的非线性、自适应、自组织系统,它是在现代神经科学研究成果的基础上,试图通过模拟人类神经系统对信息进行加工、记忆和处理的方式,设计出的一种具有人脑风格的信息处理系统。它可广泛应用于预测、分类、模式识别和过程控制等各种数据处理场合,相对于传统的数据分析处理方法,更适合处理模糊、非线性和模式特征不明确的问题。
BP神经网络是单向传播的多层前向神经网络,网络可分为输入层、中间层(隐含层)和输出层,其中输入和输出都只有1层,中间层可有1层或多层。同层的网络结点之间没有连接,每个网络结点表示一个神经元,其传递函数通常采用Sigmoid型函数。每对神经元之间的连接上有一个加权系数W,它可以加强或减弱上一个神经元的输出对下一个神经元的刺激。这个加权系数通常称为权值,修改权值的规则称为权值算法。建立在BP神经网络基础上的专家系统根据一定的算法,通过对样本数据的学习确定网络权值。神经网络专家系统的权值确定、结构稳定后,就可以处理新的数据,给出相应的输出。
2.2基于BP网络的电力企业信息化水平评价的学习过程
BP神经网络电力企业信息化水平评价模型中,输入层包含55个神经元,分别接受55个电力企业信息化水平评价中三级指标的样本数据输入;中间层包含26个神经元;输出层有1个神经元,就是电力企业信息化水平评价结果,相应的BP网络结构如图1所示。