关于BP神经网络的电力企业信息化水平评价指标体系研究(3)
作者:佚名; 更新时间:2014-12-03
由于神经网络各层的初始连接权值是任意的,必须先对神经网络进行训练,使电力企业信息化水平评价结果的实际输出与期望值的偏差尽可能小。BP神经网络通过训练将学习样本的真实值与网络输出的误差反向传播到各层的神经元,采用梯度下降法不断调节各层的权值,减小因权值带来的偏差,从而使训练样本真实输出与网络输出的误差控制在设定的0.001误差范围内。具体BP神经网络学习过程如下:
(1)根据电力企业信息化水平评价指标要求,提供训练集。选人对网络输出即电力企业信息化水平有影响的三级指标x1,x2,……,x55作为输入自变量,以此确定输入节点的个数(本网络有55个输入节点);
(2)进行初始化。置所有权值为随机任意小,给定学习精度£一10,目标误差为0.001,信捷职称论文写作发表网,读入网络初始权重及学习样本。这里可通过对电力企业300名职工开展问卷调查,随机抽取前100组记录(样本序号为1~100)作为神经网络辩识模型的训练样本;
(3)按BP算法训练网络。学习过程流程如图2所示;
(4)判断学习精度是否达到要求,如达到转入下一步执行;否则返回上一步继续学习;
(5)储存并输出权值。利用训练好的网络进行测试(采用10个样本记录为例),输出电力企业信息化水平的最终评价结果。
3实验结果及分析
采用BP神经网络对电力企业信息化水平进行辨识,输入层、隐含层和输出层的结点数分别为55×26×1。根据经验和试验,前100组记录用作学习样本,作为训练神经元连接权值用,学习精度£=1×10;后10组(样本序号为291~300)样本作为测试检验用。经过反复多次学习,其学习结果(测试)如表2所示。