Peirce:科学家与逻辑学家(3)
作者:佚名; 更新时间:2014-12-05
科学概念推广中的一例其实也是Peirce为发展逻辑学而提出的。
首先,Peirce晚年极为倾心的存在图表逻辑构想正是基于化学图表原理(可能还有拓扑学方法的启发)。存在图表是Peirce在其指号学背景下对Euler图和Venn图的重大发展,具有极强的表现力。其在自然、直观、易操作上要远胜于代数方法(包括标准的Peano-Russell记法),因为我们心灵的思想过程被同构地展现在推理者面前,对于图表的操作代替了在化学(和物理)实验中对于实物的操作。化学家把这样的实验描述为向自然(Nature)的质疑,而现在逻辑学家对于图表的实验就是向所关涉逻辑关系之本性(Nature)的置疑。〔7〕
第二个例子,现代逻辑(可能从《数学原理》开始)中的一对基本概念:命题和命题函项(或有时称为闭语句和开语句)原本就是来自化学中的“饱和”(Saturation或Gesättigkeit)和“未饱和”概念。Peirce用黑点或短线来代替语句中的“指示代词”(即逻辑中的自变元),得到形如“——大于——”、“A大于——”这样的形式,它们分别被称为关系述位(relative rhema)(区别于像系词一样的关系词项)和非关系述位,也即他那里的谓词(谓词是几元的取决于我们到底如何选择去分析命题)。他指出,述位不是命题,并坦言“述位在某种程度上与带有未饱和键(unsaturated bonds)的化学原子或化学基极为相似。”〔8〕然而不无意外,我们发现同时期欧洲大陆的Frege也正在独立地从化学概念得到逻辑研究的灵感。他把诸如“……的父亲”的函项记号称为“未饱和的”或“不完全的”表达式,以与专有名词相区别。〔9〕
另外一个例子是Peirce提出的价分析(Valency Analysis)法。正如名字所显示出的,它同化学中的化合价概念密切相关,Peirce所使用的词语Valency直接源于化学中的术语Valence即化合价。价分析是Peirce在图表化逻辑思想指引下于存在图表(Existential Graphs)之外创设的另一种二维表现法。其中,显然他是把思想中概念的组合与“化学离子”的组合相比拟,如他采用类似“●——”这样的结构表示带有“开放端(loose end)”(即黑点后面的横线)的实体,即谓词;这就是化学中离子结构的简单变形。由于它们的开放端导致的“不稳定”(正像离子本身不稳定一样),开放端之间就可能连接起来形成共同“键”(bond)。如 “●—— ”同“ ——●”可形成“●——●”样式的新结构〔10〕。正是利用这样的离子组键技术,Peirce成功证明了其著名的化归论题,即对于三元以上关系都可化归到三元和三元以下的关系,但一元、二元和三元关系却不能化归。这一论题是他哲学思想体系中所坚持的三分法原则的逻辑证明。
综观Peirce的科学家经历和逻辑学家志向,Peirce把逻辑学视为对于各种科学推理方法的概括,同时又把逻辑学理论指导、应用于科学研究过程。二者紧密相连,互为作用。而更为突出的,他的逻辑贡献大都可追溯到其多样化的科学研究,他的逻辑独创往往也是其科学研究经验的启发性建议。笔者以为,研究Peirce的这些方面,我们至少可得出以下启示:逻辑学应从数学和科学推理实践中概括推理的一般本质;逻辑学家应尽可能学习、掌握科学(传统逻辑就因为没有这样做而失败,科学家非逻辑学家或逻辑学家非科学家都不能胜任于对科学推理的分析工作),因为拓宽自己的科学研究领域必将能加强逻辑学家对于逻辑科学的贡献能力;同时科学家要想更为一般地把握住推理方法也应了解逻辑学,但是前者在当前学术界值得特别注意。当前处于被冷落地位的逻辑学要想摆脱这种局面,必须加快发展自己;而经验科学(不再仅仅是数学)必能使得逻辑学发展获得新的生命力,这已经是被现代逻辑的发展史(特别是初创时期)所证实的。
参考文献:
〔1〕库克. 现代数学史〔M〕.呼和浩特:内蒙古人民出版社,信捷职称论文写作发表网,1982年. 61.
〔2〕罗素. 西方的智慧〔M〕.北京:商务印书馆,1999年. 276.
〔3〕Hilary Putnam. Peirce the Logician〔J〕.Historia Mathematica , 9(1982). 292.
〔4〕Max Fisch. The Decisive Year and Its Early Consequences〔M〕. Writings of Charles S. Peirce: a Chronological Edition(Vol.2). Bloomington, Indiana. Indiana University Press. 1984. Introduction.
〔5〕〔6〕〔7〕〔8〕Charles Sanders Peirce. Collected Papers of C. S. Peirce (Vol.1-8)〔C〕.Cambridge, Massachusetts. Harvard University Press. 1931-58. 2.227,2.93,4.530,3.421.(按照Peirce文献的通常标注法,这里如“2.227”的记法,小圆点前面的数字为卷数,后面的数字为节数)
〔9〕威廉·涅尔,玛莎·涅尔. 逻辑学的发展〔M〕.北京:商务印书馆,1985年.624.
〔10〕Robert Burch. Valental Aspects of Peircean Algebraic Logic〔J〕, Computers Math. Applic, Vol.23, No.6-9, 1992. 665-677.
Peirce:The Scientist and Logician
Abstract: C.S.Peirce is an outstanding American scientist and logician. He worked as a scientist. However he claimed that his research into various sciences is for the purpose of logic, and he would like to describe himself as a logician. On the other way, he thought of logic as science, and the long-period scientific experiments stimulate most of his original contributions in logic. Actually, the consideration of Peirce’s approaches in research provided a good suggestion for both the scientists who used extensively the reasoning methods and logicians who investigate specially the reasoning.
Key Words: Peirce; scientist; logician; science; semiotics; chemical conception
首先,Peirce晚年极为倾心的存在图表逻辑构想正是基于化学图表原理(可能还有拓扑学方法的启发)。存在图表是Peirce在其指号学背景下对Euler图和Venn图的重大发展,具有极强的表现力。其在自然、直观、易操作上要远胜于代数方法(包括标准的Peano-Russell记法),因为我们心灵的思想过程被同构地展现在推理者面前,对于图表的操作代替了在化学(和物理)实验中对于实物的操作。化学家把这样的实验描述为向自然(Nature)的质疑,而现在逻辑学家对于图表的实验就是向所关涉逻辑关系之本性(Nature)的置疑。〔7〕
第二个例子,现代逻辑(可能从《数学原理》开始)中的一对基本概念:命题和命题函项(或有时称为闭语句和开语句)原本就是来自化学中的“饱和”(Saturation或Gesättigkeit)和“未饱和”概念。Peirce用黑点或短线来代替语句中的“指示代词”(即逻辑中的自变元),得到形如“——大于——”、“A大于——”这样的形式,它们分别被称为关系述位(relative rhema)(区别于像系词一样的关系词项)和非关系述位,也即他那里的谓词(谓词是几元的取决于我们到底如何选择去分析命题)。他指出,述位不是命题,并坦言“述位在某种程度上与带有未饱和键(unsaturated bonds)的化学原子或化学基极为相似。”〔8〕然而不无意外,我们发现同时期欧洲大陆的Frege也正在独立地从化学概念得到逻辑研究的灵感。他把诸如“……的父亲”的函项记号称为“未饱和的”或“不完全的”表达式,以与专有名词相区别。〔9〕
另外一个例子是Peirce提出的价分析(Valency Analysis)法。正如名字所显示出的,它同化学中的化合价概念密切相关,Peirce所使用的词语Valency直接源于化学中的术语Valence即化合价。价分析是Peirce在图表化逻辑思想指引下于存在图表(Existential Graphs)之外创设的另一种二维表现法。其中,显然他是把思想中概念的组合与“化学离子”的组合相比拟,如他采用类似“●——”这样的结构表示带有“开放端(loose end)”(即黑点后面的横线)的实体,即谓词;这就是化学中离子结构的简单变形。由于它们的开放端导致的“不稳定”(正像离子本身不稳定一样),开放端之间就可能连接起来形成共同“键”(bond)。如 “●—— ”同“ ——●”可形成“●——●”样式的新结构〔10〕。正是利用这样的离子组键技术,Peirce成功证明了其著名的化归论题,即对于三元以上关系都可化归到三元和三元以下的关系,但一元、二元和三元关系却不能化归。这一论题是他哲学思想体系中所坚持的三分法原则的逻辑证明。
综观Peirce的科学家经历和逻辑学家志向,Peirce把逻辑学视为对于各种科学推理方法的概括,同时又把逻辑学理论指导、应用于科学研究过程。二者紧密相连,互为作用。而更为突出的,他的逻辑贡献大都可追溯到其多样化的科学研究,他的逻辑独创往往也是其科学研究经验的启发性建议。笔者以为,研究Peirce的这些方面,我们至少可得出以下启示:逻辑学应从数学和科学推理实践中概括推理的一般本质;逻辑学家应尽可能学习、掌握科学(传统逻辑就因为没有这样做而失败,科学家非逻辑学家或逻辑学家非科学家都不能胜任于对科学推理的分析工作),因为拓宽自己的科学研究领域必将能加强逻辑学家对于逻辑科学的贡献能力;同时科学家要想更为一般地把握住推理方法也应了解逻辑学,但是前者在当前学术界值得特别注意。当前处于被冷落地位的逻辑学要想摆脱这种局面,必须加快发展自己;而经验科学(不再仅仅是数学)必能使得逻辑学发展获得新的生命力,这已经是被现代逻辑的发展史(特别是初创时期)所证实的。
参考文献:
〔1〕库克. 现代数学史〔M〕.呼和浩特:内蒙古人民出版社,信捷职称论文写作发表网,1982年. 61.
〔2〕罗素. 西方的智慧〔M〕.北京:商务印书馆,1999年. 276.
〔3〕Hilary Putnam. Peirce the Logician〔J〕.Historia Mathematica , 9(1982). 292.
〔4〕Max Fisch. The Decisive Year and Its Early Consequences〔M〕. Writings of Charles S. Peirce: a Chronological Edition(Vol.2). Bloomington, Indiana. Indiana University Press. 1984. Introduction.
〔5〕〔6〕〔7〕〔8〕Charles Sanders Peirce. Collected Papers of C. S. Peirce (Vol.1-8)〔C〕.Cambridge, Massachusetts. Harvard University Press. 1931-58. 2.227,2.93,4.530,3.421.(按照Peirce文献的通常标注法,这里如“2.227”的记法,小圆点前面的数字为卷数,后面的数字为节数)
〔9〕威廉·涅尔,玛莎·涅尔. 逻辑学的发展〔M〕.北京:商务印书馆,1985年.624.
〔10〕Robert Burch. Valental Aspects of Peircean Algebraic Logic〔J〕, Computers Math. Applic, Vol.23, No.6-9, 1992. 665-677.
Peirce:The Scientist and Logician
Abstract: C.S.Peirce is an outstanding American scientist and logician. He worked as a scientist. However he claimed that his research into various sciences is for the purpose of logic, and he would like to describe himself as a logician. On the other way, he thought of logic as science, and the long-period scientific experiments stimulate most of his original contributions in logic. Actually, the consideration of Peirce’s approaches in research provided a good suggestion for both the scientists who used extensively the reasoning methods and logicians who investigate specially the reasoning.
Key Words: Peirce; scientist; logician; science; semiotics; chemical conception
上一篇:在语言的本质深处交谈