贾可·辛提卡是当代著名的逻辑学家,他创建了博弈理论语义学,用博弈论的方法来刻画命题理解,从而判定命题的真值。博弈理论语义学对命题的真值判断标准是符合论的,这与维特根斯坦前期的“图象论”如出一辙,而这种符合关系的建立则直接源自于维特根斯坦后期的“语言游戏说”,通过语义博弈建构图象与世界图示之间的关系。可以说,维特根斯坦哲学是辛提卡博弈论语义学的直接思想来源。
关键词: 博弈论;语义学;逻辑哲学
贾可·辛提卡是当代著名的逻辑学家,他将博弈论与语义学直接结合起来,创建了博弈论语义学。辛提卡用博弈论的方法来处理命题,就是要确定命题的值,即命题的真或假。同经典逻辑一致,辛提卡预设了命题是二值的。辛提卡首先给出一个定义域D,任何名称都可以在这个集合中找到所指。
博弈论语义学的核心是将量词短语看成专名,将句子看成语句函项,然后在给定的定义域D中选择相应的个体将句子中的量词短语替换,从而达到消除量词,找到原子句的目的。在方法上,辛提卡选择了博弈论,他将人们对句子的理解过程比喻为一个两人博弈,两个参与人分别为“我”和“自然”,每个回合必定要分出胜负,不容平局,那么对于一个句子S,根据规则,博弈双方轮流将S约化为S’、S’’,等等,直至最后使得约化的句子不再包含变量和连接词,即原子句,此时双方就可一决输赢。如果这个原子句为真,则我取胜,自然失败; 如果这个原子句为假,则自然取胜,我失败。运用博弈论语义学,我们能够从大量的语言信息中得到最基本、最简化的语句,从而能够轻松地判定这些语言信息的真假。理解这一理论的关键是理解定义域D、原子句、博弈等概念。辛提卡的博弈论语义学可以说是维特根斯坦前后期哲学的综合:“语言博弈”概念源于维特根斯坦后期哲学中的语言游戏说,而它的理论核心则是维特根斯坦前期哲学——图象论。
一、“图象论”与命题真值。
维特根斯坦是学界倍受关注的大师,其前后期思想的迥异恰当地诠释了他的哲学主题:“哲学不是一种学说,而是一种活动。”①有趣的是,辛提卡博弈论语义学所强调的也是动态的理解命题,这与维特根斯坦哲学在本质上殊途同归。
维特根斯坦哲学的主要贡献之一就在于提出了著名的“图象论”。维特根斯坦前期哲学和后期哲学的目的都在于通过研究语言的结构和界限来理解思想的结构和界限。维特根斯坦工作的基点,就是回到逻辑的出发点,即考虑命题的性质。这样,真的界限就构成了语言的界限,维特根斯坦所考虑的就是关于事实的话语。“人给自己造出事实的图象”②。
维特根斯坦指出: 命题是实在的图象,“图象是实在的一幅模型”③。“图象是一种事实”④。“图象所表现者即是其意义”⑤。“图象的真假在于其意义与实在的符合与否”⑥。维特根斯坦认为,图象与它所图示的事实之间的关系包括两个方面:
一是这种关系“由图象元素与物项的配合而成”⑦ ,这种关系本身也是一种图象。
二是“凡图象,不论只有什么型式但要能表象实在———对或错———所必须与实在共有的东西,即是逻辑型式,亦即实在的型式。”⑧
所以,“每个图象亦是一逻辑图象”⑨。“对象是简单的”⑩。“对象构成世界的本体。因此不能是复合的。”一切复合物必然可分解到不可再分的部分,这就是绝对简单的对象,那么,这种绝对简单的对象是什么? 很显然,维特根斯坦这一思想的形成深受罗素和弗雷格的影响。罗素对客体进行了区分,一类是亲知的客体,一类是描述的客体,通过“亲知还原”,描述的客体可以转化为亲知的客体,维特根斯坦对罗素的客体进行了扩展,认为属性和关系也是一种客体。语言中的一个名称来表示一个简单的客体,通过这些客体的结合方式,指称客体的名称可以相互组合成句子。
对于简单的客体,我们无法定义它们是什么,我们仅仅能够指示它们,这样,我们也就无法言说这些客体是存在的,因为定义一个客体就是意谓着被定义项的存在。维特根斯坦的绝对简单的对象实质上是罗素亲知客体的变体,是经验的客体。图象论的主旨是说明图象如何具有命题的内容,图象可以看成一个句子,一个句子也可以看成图象,这对于解释最简单句子的合理性是显而易见的,那么如何处理复杂的句子呢?
维特根斯坦最开始的设想是用合取和析取处理一切复杂句子,这也是辛提卡采取斯科伦前束式处理量词句的直接思想来源,但是维特根斯坦后来采取了另一个思路,代之以集成的图象法,“凡对于复合体的陈述,都可解析成对于其成分的陈述,解析成一些把复合体完全摹状了的命题。”即一个复杂的表达式的真值取决于组成它的表达式的真值,即命题就是基本命题的真值涵项,这样,维特根斯坦就完成了语言的运作方式。维特根斯坦的这一思想源于罗素和弗雷格的启发,罗素和弗雷格两人都认为命题才是最基本的意义单位,主张将命题形式化,即用数学中的函数表示命题。维特根斯坦对这一思想的运用是水到渠成的。维特根斯坦认为,“命题是原初命题的真值函量”。“原初命题是命题的真值函目”。换句话说,“一切命题都是对原初命题做真值运算的结果”。“命题就是从一切原初命题的总和(自然也从其确是一切原初命题的总和)而得出的一切。所以,从某种意义可以说,一切命题都是原初命题的总括。”
命题与世界的图象论包含了两层含义: 一是图象的元素与事物之间具有对应关系;二是图象与事实之间具有相同的逻辑形式。由此,在维特根斯坦看来,“图象是实在的一幅模型”,“图象是一事实”,“图象所表现者即是其意义”。
正是因为命题具有相同的结构,才使得我们可以将其形式化,并且可以进行变项替换。那么,图象如何与世界相联系? 在维特根斯坦早期哲学中,这种关系由名称—客体的关系来决定,但是名称如何与客体相联系? 与其说维特根斯坦后期哲学是对前期哲学的反叛,不如说是进一步的深入,在维特根斯坦的语言游戏说中,名称与客体的关系被受一定规则支配的人类活动所确定。在完成这个思想转变之后,维特根斯坦不需要图象论了,取而代之的是语言这种被规则所支配的特征。
辛提卡的博弈论语义学是将博弈的方法引入命题分析,他的研究涉及两个问题,第一个问题就是命题的构成和命题的真假,第二个问题就是如何确定命题的真假。第二个是维特根斯坦后期哲学讨论的一个主要问题,其前期哲学为解决辛提卡的第一个问题提供了思想元素。命题是由概念构成的,而博弈语义学中的概念则直接对应维特根斯坦意义上的存在。值得注意的是,维特根斯坦的存在是与事实相对应的存在,是以现实世界为界限的,所以辛提卡用他的可能世界改造了维特根斯坦的客体。在辛提卡看来,很多情况下,人们的语言交流所涉及的客体多是描述的客体,这些描述的客体有些能转换为亲知客体,有些不能,如“结构为H3O的水”,但是人们在日常的交流中又会涉及这些概念,自然在定义域D中也就应该包含这些元素,可以看出,辛提卡的客体是对维特根斯坦客体的扩展。辛提卡的客体分为存在的和可能存在的两类,即在现实世界中存在和在可能世界中存在。而且很明显的是,辛提卡的存在概念不是语义学层面上的,而是语用学层面上的语义,这在博弈论语义学的操作性中得以体现。在辛提卡的博弈论语义学中,定义域D中的个体必须能与可能世界中的对象一一对应,脱离了这种对应关系,我们就不可能知道自己在言说何物, 更不用说判定言说语句的真假。正如Dana Scott所指出的那样,语义确定一个实现不是必需的,它应该为证实一个实现是正确的提供标准。
在确定了命题的构成之后,需要解决的问题是命题真假的标准是什么。辛提卡认为,命题是有意义的,命题的意义就是命题的真假值。博弈论语义学的处理方法是找到一个体用概念的名称代入量词所约束的变元,即参与人“我”在定义域D中找到相关的个体以证实语句,而参与人“自然”则企图找到范例来证伪语句。那么,如何才是找到相关的个体呢? 或者说,怎样才知道代入个体后的语句为真? 如前所述,辛提卡在扩展了维特根斯坦概念的基础上明确了命题的构成问题,相应的,辛提卡的命题范围较之维特根斯坦就宽泛的很多。辛提卡将博弈论语义学称为“寻找并找到的”逻辑,寻找并找到了什么? 就是找到一个适当个体代入后的原子句所反映出来的图象与现实世界相符合。这不仅直观,而且符合人们的日常交流。可见,在确定命题真假的标准上,辛提卡与维特根斯坦是一致的,就是采用图象论的符合标准。辛提卡自己也曾明确指出,“博弈语义学不排斥图示的(同形的)关系理论,图示的(同形的) 关系理论在原子句和现实之间建立了联系。”从这句话我们可以看出,要确定命题的真值,只要将命题与图象做个比较就可以了。用辛提卡的话说就是,“名称—客体关系曾经被建立,仅仅需要一件事,这件事就是将原子句和现实相比较。”
辛提卡指出:“维特根斯坦的图像理论和逻辑语义学之间的相似性和非相似性更有趣。最重要的大范围相似性之一,就是在两个理论中,语言的基本元素和现实的特定方面之间的代表关系,用任何的方式都不能进一步的分析。”罗素指出,事实是意指那种使一个命题真或假的事物。而一个命题的本质就在于:它可以两种方式,即以人们所谓的真的方式或假的方式对应于一个事实。最基本的事实是原子事实,与原子事实相对应的是原子命题,它肯定某物具有某种性质或某些事物具有某种关系。原子命题的真假取决于它是否与原子事实相符合。在原子命题的基础上,借助逻辑联结词就构成了分子命题。分子命题的真假取决于组成它的原子命题的真假,是原子命题的真值函项。在分子命题的基础上,借助逻辑量词可以构成更高一级的概括命题。其真假最终也取决于原子命题的真假。维特根斯坦继承了这一思想,认为任何复杂命题经过分析都可以还原为最基本的原子命题。辛提卡由此得出结论:“一个指示性句子的表达在通常的本质上不是这些语言博弈的一个回合,在这些语言博弈中,给出了几个构成成分的词语,并且因此给出了整个句子的内涵。”在辛提卡的博弈论语义学中,我们根据可能世界理论可以确定定义域D,根据维特根斯坦的图象论可以处理命题,并且将命题的具体处理方法转化为真值函项的求解,那么,接下来要考虑的是,我们究竟应该如何为真值函项求解,并且这个方法是否可以形式化。遵循维特根斯坦的哲学思路,辛提卡找到了博弈论。
二、“语言游戏说”与语义博弈。