水性涂料用高分子分散剂的研究进展
作者:佚名; 更新时间:2013-10-16

                      作者:张方志 李元杰 王峰 刘红英

  摘要:本文总结了水性涂料用高分子分散剂的结构特点、在颜料粒子表面的吸附行为及研究方法、常用种类、以及影响高分子分散剂分散稳定性能的因素,并展望了其发展方向。
  关键词:水性涂料;高分子分散剂;吸附;分散;稳定性
  Abstract: The paper briefly summarized the character of polymeric dispersants, adsorption of dispersants onto pigment surface, main kinds of dispersants and the effect on disperse stability. The development trend of polymeric dispersants was also pointed out.
  Key words: waterborne coating; polymeric dispersant; adsorption; dispersion; stability
  
  在涂料等化工产业中,颜料的分散是涂料制造技术的重要环节。为了使涂料中的有机、无机颜料得到均一稳定分散,经常使用分散剂。分散剂在涂料的贮存、涂装操作、涂膜的形成、涂料的性能等方面有着重要作用。
  尽管传统的分散剂在水性分散介质中显示出有效的分散稳定作用,但由于它们在颜料粒子表面的吸附不十分牢固,容易从粒子表面上解吸从而导致被分散的粒子重新聚集或沉淀,体系的长期稳定性欠佳,对漆膜外观、硬度及耐老化等性质也有不利影响。为克服传统分散剂的局限性,近年来开发并应用了高分子分散剂。高分子分散剂是指分子质量在数千以上的具有表面活性的高分子化合物,本质上属于表面活性剂。其概念是在20世纪80年代初期首次提出的,80年代中期推出相关产品并进入推广应用阶段。高分子分散剂对颜料的分散有显著效果,尤其对润湿性、稳定性等方面有相当大的作用,对颜料的应用性能也有较大改善,已成为新一代的高效分散剂。
  目前,全世界只有ICI、DuPont、Sun Chemical、KVK等少数几家国际知名的大公司生产这种产品(主要是ICI公司的Solsperse系列产品)[1],生产技术严密封锁,产品以垄断价格出售。我国对聚合物分散剂的研究起步较晚,在90年代才有聚合物分散剂的综述性报道。[2]近年来,我国也开发了一些聚合物分散剂品种,如NBZ-3、DA-50、WL系列等,但效果不理想,产品也未系列化。关于分子量的分布和分散剂链基团的选择基础理论研究较少,产品的性能与国外同类产品相比还有很大差距。
  1水性涂料用高分子分散剂的结构特征及在颗粒表面的吸附
  1.1水性涂料用高分子分散剂的分子结构特征
  高分子分散剂通过静电斥力和立体位阻障碍作用来维持颜料粒子在介质中的性能,为了使分散体系均匀稳定并满足性能要求,吸附在颗粒表面的高分子分散剂的分子结构需要具备以下两个特征:①与固体颗粒表面能形成牢固的结合的锚固段,如-COOH、-COO-、-NR2、-NR3+、-SO32-、-PO43-、-OH等;②在分散介质中有一定长度的溶剂化链段,如聚乙二醇。与传统的表面活性剂型分散剂相比,其结构中的锚固基团及溶剂化链取代了表面活性剂的亲水基团与亲油基团。
  1.2超分散剂在颗粒表面的吸附机理
  分散剂在分散相上的吸附是其显示润湿分散性能的前提。在水体系中,锚固端一般在颗粒的表面形成吸附,它与颗粒的相互作用与锚固基团的种类和粒子的表面性质有关。固体颗粒与分散剂之间的结合力主要有以下几种:
  1.2.1离子对
  对于强极性表面的无机物颗粒,当粒子表面电荷和超分散剂官能团带有的电荷相反时,高分子分散剂的锚固基团可与颗粒表面的强极性基团以离子对的形式结合起来,高分子分散剂吸附在颗粒表面,见图1A 。另外,如果粒子表面的酸碱性与锚固基团相反,离子对也可形成。
  1.2.2氢键
  大多数有机颜料没有荷电点,其表面极性不如无机颜料强, 反应活性也不如无机颜料高, 因此一般不能形成离子对的锚固形式。但由于其分子结构中可能含有氢键给体或受体,如酯基、羰基以及醚键等,因此具备形成氢键的能力,高分子分散剂可以通过氢键锚固于颜料表面。由于氢键的键能较低,单一的氢键难以保证足够的吸附强度, 因此每个高分子分散剂分子中需要含有多个锚固基团(见图1B),宜采嵌段或梳状的分子结构。
  1.2.3分散颜料的表面处理
  有些有机颜料及部分碳黑的表面完全非极性或极性很低,不具备可供超分散剂锚固的活性基团,故不论使用何种超分散剂,分散效果均不明显。此时需使用表面增效剂(见图1C)。这是一种带有极性基团的颜料衍生物,其分子结构及物理化学性质与待分散颜料非常相似,因此它能通过分子间范德华力紧紧地吸附于有机颜料表面,同时通过其分子结构的极性基团为高分子分散剂锚固基团的吸附提供活性位。通过这种“协同效应”,高分子分散剂就能对有机颜料产生非常有效的润湿和稳定作用。
 

水性涂料用高分子分散剂的研究进展

 
  (A. 在强极性粒子表面的单点离子对吸附;B. 通过多点氢键吸附;C. 通过表面增效剂在非极性表面吸附。)
  1.3研究高分子分散剂吸附行为的方法
  为了全面表征高分子分散剂在颜料表面的吸附,需要确定3个参数:①吸附量Γ(mg•m2或mol•m2);②与颜料表面直接结合的链段分数p;③吸附层厚度δh。
  1.3.1吸附等温线测量法
  可以通过测定吸附前后体系中高分子分散剂的浓度,计算分散剂在颜料表面的吸附量Γ:
 

水性涂料用高分子分散剂的研究进展

  
  1.3.3吸附层厚度δh
  可以采用超速离心、动态光散射、微量电泳等方法,通过测试吸附分散剂前后颜料粒子半径的变化确定吸附在颜料表面的高分子分散剂的厚度。
  2影响高分子分散剂性能的因素
  目前已提出了3种分散稳定机理解释聚合物分散剂的稳定化作用:双电层理论(DLVO理论)[3]、空间稳定机理[4]、竭尽稳定机理[5],影响高分子分散剂性能的主要有以下5个因素:
  2.1分散剂的结构
  高分子分散剂由亲油基和亲水基组成,其中常见的亲油基有芳基、烷芳基、烃链等非极性基团;常见的亲水基有羧基、磺酸基、羟基、氨基及长的聚醚链等。不同亲油-亲水基的组合可得到种类繁多的分散剂,而不同种类的分散剂因其化学结构不同,与颜料粒子间的结合方式、结合力大小均有所差别。目前,很多分散剂中都含有芳环结构,利用芳环与颜料分子平面形成强的π-π键,使二者牢固地结合在一起。颜料-分散剂-水三者之间的作用力是粒子能否稳定分散的决定因素,只有分散剂与水有足够的亲和力,方可具备良好的溶解性,聚合物链才能在水中充分伸展,形成有效的立体屏障。在此前提下,亲油端与颜料离子的结合力越大,越有利于分散稳定。但是,若分散剂的亲水性太大,则其亲油性相对减弱,甚至使分散剂从粒子表面脱落,达不到分散的目的。故合成聚合物分散剂时,亲水性单体的含量不可过高。通常是在分散剂具备一定的水溶性的情况下,疏水性越强,分散效果越好。
  2.2分散剂用中和剂
  羧酸基或磺酸基聚合物在水中并不溶解,要在其中加入中和剂,使其解离为COO-或SO32-,聚合物才具有水溶性。早期使用NaOH、KOH作中和剂,钠离子和钾离子具有吸湿性,滞留在体系中会影响涂层的耐水性。后改用氨水,但中和后的聚合物盐会逐渐释放出氨,使分散剂的水溶性降低,分散效果变差。挥发性较低的醇胺作中和剂既可保证分散稳定,又不影响涂层性能。

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com