数值分析与实验(4)
作者:佚名; 更新时间:2014-12-05

  1.3.4  结果分析

  从输出结果可以看出此方程组的迭代次数为7,此时能得到精确结果是

   =-107374176

  从结果和原有知识可以知道其系数矩阵是严格对角占优的。所以此迭代解法有很好的收敛性。

  1.4  方法比较

  雅可比法和高斯-赛德尔迭代法解方程组两种方法的比较 。

  由于此题的系数矩阵是严格对角占优的,所以雅克比迭代法和高斯-赛德尔迭代法都是收敛的,信捷职称论文写作发表网,这两种迭代法没迭代一步均是作一次矩阵和向量的乘法,但前者需要2组工作单元分别存放 和 ,而后者只需要1组工作单元。对于同一个线性方程组,这两种方法可能同时收敛,也可能同时发散,也可能其一收敛,而另一发散。但当两者皆收敛时,一般来说高斯-赛德尔迭代法比雅克比迭代法收敛快。实际中更多的是使用逐次超松弛迭代法。

  第二章  矩阵的特征值及特征向量的计算

  实验目的

  在数学和物理中,很多问题都需要计算矩阵的特征值及特征向量,它们是线性代数中的一个重要课题,而在实际问题中,这样的计算是很复杂的,有的要求矩阵按模最大特征值及相应的特征向量,有些则要求全部特征值及特征向量,根据不同的要求计算方法大体上可分为2种类型。本实验用的是幂法求矩阵按模最大的特征值及对应特征向量,要求领会求矩阵特征值及特征向量的幂法的方法,并要求会编制幂法的计算程序,来计算有关问题。

  实验内容

  利用幂法求矩阵按模最大的特征值及对应特征向量。

  2.1 幂法求矩阵按模最大的特征值及对应特征向量

   用幂法求矩阵按模最大的特征值

  2.1.1 幂法算法

  幂法是求矩阵主特征值的一种迭代方法。设 按下述公式构造向量序列:

  

  其中 。

  用幂法计算实对称矩阵的特征值时,可用Rayleigh商作加速。设 的Rayleigh商为  则

  当 时,将比 更快趋于 。

  2.1.2   程 序

  

数值分析与实验

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com