3.2 基于区域的配准
3.2.1 逐一比较法
N,T大小为U V,如图所示。图3.1搜索图S与模板T示意图
逐一比较法的配准思想是:
(N-V+1)个,配准的目标就是在(M-U+1) (N-V+1)个分块图像中找一个与待配准图像最相似的图像,这样得到的基准点就是最佳配准点。 ,(i,j)为这块子图的左上角点在S图中的坐标,叫做参考点。然后比较T和S 的内容。若两者一致,则T和S 之差为零。在现实图像中,两幅图像完全一致是很少见的,一般的判断是在满足一定条件下,T和S 之差最小。 的相似程度。D(i,j)的值越小,则该窗口越匹配。 (3-1)或
(3-2)或者利用归一化相关函数。将式(3-1)展开可得:
-2 (3-3) 匹配时的取最大值。因此相关函数为:
(3-4)当R(i,j)越大时,D(i,j)越小,归一化后为:
(3-5) R(i,j) 1,并且仅当值S (m, n)/T (m, n)=常数时,R(i,j)取极大值。该算法的优点:
(1)算法思路比较简单,容易理解,易于编程实现。
(2)选用的模板越大,包含的信息就越多,匹配结果的可信度也会提高,同时能够对参考图像进行全面的扫描。
该算法的缺点:
(1)很难选择待配准图像分块。因为一个如果分块选择的不正确,缺少信息量,则不容易正确的匹配,即发生伪匹配。同时,如果分块过大则降低匹配速度,如果分块过小则容易降低匹配精度。
(2)对图像的旋转变形不能很好的处理。算法本身只是把待配准图像分块在标准参考图像中移动比较,选择一个最相似的匹配块,但是并不能够对图像的旋转变形进行处理,因此对照片的拍摄有严格的要求。
3.2.2 分层比较法
图像处理的塔形(或称金字塔:Pyramid)分解方法是由Burt和Adelson首先提出的,其早期主要用于图像的压缩处理及机器人的视觉特性研究。该方法把原始图像分解成许多不同空间分辨率的子图像,高分辨率(尺寸较大)的子图像放在下层,低分辨率(尺寸较小)的图像放在上层,从而形成一个金字塔形状。
在逐一比较法的思想上,为减少运算量,引入了塔形处理的思想,提出了分层比较法。利用图像的塔形分解,可以分析图像中不同大小的物体。同时,通过对低分辨率、尺寸较小的上层进行分析所得到的信息还可以用来指导对高分辨率、尺寸较大的下层进行分析,从而大大简化分析和计算。在搜索过程中,首先进行粗略匹配,每次水平或垂直移动一个步长,计算对应像素点灰度差的平方和,记录最小值的网格位置。其次,以此位置为中心进行精确匹配。每次步长减半,搜索当前最小值,循环这个过程,直到步长为零,最后确定出最佳匹配位置。
算法的具体实现步骤如下:
2邻域内的像素点的像素值分别取平均,作为这一区域(2 2)像素值,得到分辨率低一级的图像。然后,将此分辨率低一级的图像再作同样的处理,也就是将低一级的图像4 4邻域内的像素点的像素值分别取平均,作为这一区域(4 4)点的像素值,得到分辨率更低一级的图像。依次处理,得到一组分辨率依次降低的图像。(2)从待匹配的两幅图像中分辨率最低的开始进行匹配搜索,由于这两幅图像像素点的数目少,图像信息也被消除一部分,因此,此匹配位置是不精确的。所以,在分辨率更高一级的图像中搜索时,应该在上一次匹配位置的附近进行搜索。依次进行下去,直到在原始图像中寻找到精确的匹配位置。
算法的优点:
(1)该算法思路简单,容易理解,易于编程实现。
(2)该算法的搜索空间比逐一比较要少,在运算速度较逐一比较法有所提高。
算法的缺点:
(1)算法的精度不高。在是在粗略匹配过程中,移动的步长较大,很有可能将第一幅图像上所取的网格划分开,这样将造成匹配中无法取出与第一幅图像网格完全匹配的最佳网格,很难达到精确匹配。
(2)对图像的旋转变形仍然不能很好的处理。与逐一比较法一样,该算法只是对其运算速度有所改进,让搜索空间变小,并无本质变化,因此对图像的旋转变形并不能进行相应处理。
3.2.3 相位相关法
相位相关度法是基于频域的配准常用算法。它将图像由空域变换到频域以后再进行配准。该算法利用了互功率谱中的相位信息进行图像配准,对图像间的亮度变化不敏感,具有一定的抗干扰能力,而且所获得的相关峰尖锐突出,位移检测范围大,具有较高的匹配精度。
相位相关度法思想是利用傅立叶变换的位移性质,对于两幅数字图像s,t,其对应的傅立叶变换为S,T,即:
(3-6) ,y ),即有: ,y-y ) (3-7)根据傅立叶变换的位移性质,上式的傅立叶变换为:
T( ) (3-8)也就是说,这两幅图像在频域中具有相同的幅值,只是相位不同,他们之间的相位差可以等效的表示为互功率谱的相位。两幅图的互功率谱为:
(3-9) ,脉冲位置即为两幅被配准图像间的相对平移量x 和y式(3-9)表明,互功率谱的相位等价于图像间的相位差,故该方法称作相位相关法。
相位相关度法的优点:
(1)该算法简单速度快,因此经常被采用。对于其核心技术傅立叶变换,现在己经出现了很多有关的快速算法,这使得该算法的快速性成为众多算法中的一大优势。另外,傅立叶变换的硬件实现也比其它算法容易。
(2)该算法抗干扰能力强,对于亮度变化不敏感。
相位相关度法的缺点:
(1)该算法要求图像有50%左右的重叠区域,在图像重叠区域很小的时,算法的结果很难保证,容易造成误匹配。
(2)由于Fourier变换依赖于自身的不变属性,所以该算法只适用于具有旋转、平移、比例缩放等变换的图像配准问题。对于任意变换模型,不能直接进行处理,而要使用控制点方法,控制点方法可以解决诸如多项式、局部变形等问题。
3.3 基于特征的配准
3.3.1 比值匹配法
比值匹配法算法思路是利用图像中两列上的部分像素的比值作为模板,即在参考图像T的重叠区域中分别在两列上取出部分像素,用它们的比值作为模板,然后在搜索图S中搜索最佳的匹配。匹配的过程是在搜索图S中,由左至右依次从间距相同的两列上取出部分像素,并逐一计算其对应像素值比值;然后将这些比值依次与模板进行比较,其最小差值对应的列就是最佳匹配。这样在比较中只利用了一组数据,而这组数据利用了两列像素及其所包含的区域的信息。
该算法的具体实现步骤如下:
(1)在参考图像T中间隔为c个像素的距离上的两列像素中,各取m个像素,计算这m个像素的比值,将m个比值存入数组中,将其作为比较的模板。
(2)从搜索图S中在同样相隔c个像素的距离上的两列,各取出m+n个像素,计算其比值,将m+n个比值存入数组。假定垂直错开距离不超过n个像素,多取的n个像素则可以解决图像垂直方向上的交错问题。
(3)利用参考图像T中的比值模板在搜索图S中寻找相应的匹配。首先进行垂直方向上的比较,即记录下搜索图S中每个比值数组内的最佳匹配。再将每个数组的组内最佳匹配进行比较,即进行水平方向的比较,得到的最小值就认为是全局最佳匹配。此时全局最佳匹配即为图像间在水平方向上的偏移距离,该全局最佳匹配队应的组内最佳匹配即为图像间垂直方向上的偏移距离。
比值匹配法的优点:
(1)算法思路清晰简单,容易理解,实现起来比较方便。
(2)在匹配计算的时候,计算量小,速度快。