一氧化氮和糖尿病血管病变(2)
作者:佚名; 更新时间:2014-12-13
Sjoholm A. Nitric oxide donor SIN-1 inhibits insulin release. Am J Physiol, 1996,271:1098-1102.
2 Archer SL, Huang JMC, Hampl V, et al. Nitric oxide and cGMP cause vasorelaxation by activation of a charybolotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA, 1994,91:7583-7587.
3 Zimmermann PA, Knot HJ, Stevenson AS, et al. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Circ Res, 1997,81:996-1004.
4 Pieper GM, Mei DA, Langenstroer P, et al. Bioassay of endothelium-derived relaxing factor in diabetic rat aorta. Am J Physiol, 1992,263:H676-680.
5 Pieper GM, Peltier BA. Amelioration by L-arginine of a dysfunctional argininal nitric oxide pathway in diabetic endothelium. J Cardio Pharmaco, 1995,25:397-403.
6 Pieper GM, et al. Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diabetic BB rat. Diabetologia, 1997,40:910-915.
7 Wu G, Meininger CJ. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol, 1995,269:H1312-H1318.
8 Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med, 1994,16:383-391.
9 Carmeron NE, Cotter MA. Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: role of polyol pathway. Diabetologia, 1992,33:1011-1019.
10 Kumari K, Umar S, Bansal V, et al. Inhibition of diabetes-associated complications by nucleophilic compounds. Diabetes, 1991,40:1079-1084.
11 Diederich D, Skopec J, Diederich A, et al. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol, 1994,266:H1153-1161.
12 Graier WF, Posch K, Wascher TC, et al. Role of superoxide anions changes of endothelial vasoactive response during acute hyperglycemia. Horm Metab Res, 1997,29:622-626.
13 Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis, 1995,26:875-888.
14 Hogen M, Cerami A, Bucala R. Advanced glycosylation endproducts block the antiproliferation effect of nitric oxide. J Clin Invest, 1992,90:1110-1115.
15 Bucala R, Tracey KJ, Gerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest, 1991,87:432-438.
16 Farkas J, Menzel EJ. Proteins lose their nitric oxide stabilizing function after advanced glycosylation. Biochim Biophys Acta, 1995,1245:305-310.
17 Wascher TC, Graier WF, Bahadori B. Time course of endothelial dysfunction in diabetes mellitus. Circulation, 1994,90:1109.
18 Sakamoto Sadachi, Kazushi Minami, Yasuharu Niwa, et al. Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokoshima Fatty rat, a model of spontaneous NIDDM. Diabetes, 1998,47:82-86.
2 Archer SL, Huang JMC, Hampl V, et al. Nitric oxide and cGMP cause vasorelaxation by activation of a charybolotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA, 1994,91:7583-7587.
3 Zimmermann PA, Knot HJ, Stevenson AS, et al. Increased myogenic tone and diminished responsiveness to ATP-sensitive K+ channel openers in cerebral arteries from diabetic rats. Circ Res, 1997,81:996-1004.
4 Pieper GM, Mei DA, Langenstroer P, et al. Bioassay of endothelium-derived relaxing factor in diabetic rat aorta. Am J Physiol, 1992,263:H676-680.
5 Pieper GM, Peltier BA. Amelioration by L-arginine of a dysfunctional argininal nitric oxide pathway in diabetic endothelium. J Cardio Pharmaco, 1995,25:397-403.
6 Pieper GM, et al. Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diabetic BB rat. Diabetologia, 1997,40:910-915.
7 Wu G, Meininger CJ. Impaired arginine metabolism and NO synthesis in coronary endothelial cells of the spontaneously diabetic BB rat. Am J Physiol, 1995,269:H1312-H1318.
8 Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med, 1994,16:383-391.
9 Carmeron NE, Cotter MA. Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: role of polyol pathway. Diabetologia, 1992,33:1011-1019.
10 Kumari K, Umar S, Bansal V, et al. Inhibition of diabetes-associated complications by nucleophilic compounds. Diabetes, 1991,40:1079-1084.
11 Diederich D, Skopec J, Diederich A, et al. Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol, 1994,266:H1153-1161.
12 Graier WF, Posch K, Wascher TC, et al. Role of superoxide anions changes of endothelial vasoactive response during acute hyperglycemia. Horm Metab Res, 1997,29:622-626.
13 Bucala R, Vlassara H. Advanced glycosylation end products in diabetic renal and vascular disease. Am J Kidney Dis, 1995,26:875-888.
14 Hogen M, Cerami A, Bucala R. Advanced glycosylation endproducts block the antiproliferation effect of nitric oxide. J Clin Invest, 1992,90:1110-1115.
15 Bucala R, Tracey KJ, Gerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilation in experimental diabetes. J Clin Invest, 1991,87:432-438.
16 Farkas J, Menzel EJ. Proteins lose their nitric oxide stabilizing function after advanced glycosylation. Biochim Biophys Acta, 1995,1245:305-310.
17 Wascher TC, Graier WF, Bahadori B. Time course of endothelial dysfunction in diabetes mellitus. Circulation, 1994,90:1109.
18 Sakamoto Sadachi, Kazushi Minami, Yasuharu Niwa, et al. Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokoshima Fatty rat, a model of spontaneous NIDDM. Diabetes, 1998,47:82-86.
下一篇:护理人群中焦虑状况调查和分析