3讨论
肾素血管紧张素系统其主要的效应分子血管紧张素Ⅱ具有调节血压、水钠平衡、神经功能等作用. 研究证实,血管紧张素Ⅱ参与了动脉硬化、心肌梗塞、血管和心肌重塑以及充血性心力衰竭的病理生理过程. 血管紧张素Ⅱ通过直接激活AT1R并间接刺激一些生长因子和细胞因子的释放,诱导心肌细胞,血管细胞肥厚和增生[2]. 同时也可刺激AT2,激活与AT1相反的生物学效应而导致血管扩张、缓激肽生成增加、抑制纤维化和血管重塑[3]. 本研究构建AT1短发夹RNA表达质粒,试图用基因沉默技术抑制哺乳动物细胞的AT1 mRNA的表达,希望在阻滞AT1受体之后,通过血管紧张素Ⅱ对AT2的作用,达到血管扩张,降低血压、抑制血管重塑等目的[4].
实验结果表明,我们观测到AT1基因mRNA的表达在早期即有减少,而随着mRNA水平的抑制,相应的蛋白也有所减少. 结果表明,U6启动子驱动的shRNA序列可有效地和特异地抑制AT1基因在转染的C6细胞中的表达. 因此,通过shRNA的表达,信捷职称论文写作发表网,在细胞中抑制与高血压病理生理相关的AT1基因的表达,有可能成为一种有效的治疗方法.
目前尚无选择siRNA序列的共识性意见或标准[5]. 为了优化siRNA诱导的基因沉默效率,许多研究小组对寡核苷酸长度、二级结构及siRNA双链的序列特异性进行了研究. 普遍认为[6],siRNA序列应在靶基因起始密码子下游100个碱基之后进行选择,应避开起始密码子的5′或3′端非编码区选择siRNA序列. 选择的正义链序列应是AA(N19)TT,其中N代表任何核苷酸,即选择的siRNA应该有两个尿嘧啶核苷的3′突出末端. 并且所选的siRNA的长度应是21个核苷酸. 决定RNA干扰研究成功与否的因素还有很多,包括靶位在mRNA三级结构中的位置、转染效率以及双链shRNA的特异性等[7-8]. 在比较本实验中设计的四条质粒时我们注意到,其中Pc和Pd的靶向裂解部位均位于靶基因mRNA二级结构中的核心位置尤其以Pd明显,这可能是质粒转染细胞后转录产生的短发夹RNA在与RISC (RNA诱导的基因沉默复合物)结合后无法进入靶mRNA裂解部位而导致实验失败的原因之一. 而Pa和Pb的靶向裂解部位位于靶基因mRNA二级结构中的表面位置,但质粒Pa也无效,分析可能的原因:①质粒Pa的GC含量偏低可以导致对靶基因mRNA的识别效率的减少; ②与RISC杂交效率的下降. 除此之外,我们还发现Pb质粒裂解靶基因的局部二级结构比质粒Pa裂解的部位更松散一些,也就是前者靶位中的氢键相对弱于后者的靶位. 在这些影响因素中,我们认为最重要的因素是siRNA能否进入靶位,而靶位中mRNA的结构是否足够松散,允许siRNA与RISC复合体进行靶向裂解.
总之,在进行短发夹RNA设计时,除了要遵循如靶序列应位于开放阅读框,而不能选择非编码区;GC含量应在50%左右;避开起始密码子后至少100个碱基;搜索5′AA(N19)序列并进行BLAST等一些普遍的规则[9]之外,我们认为siRNA能否进入靶裂解部位并且靶位的二级结构是否松散是有效shRNA合理设计并取得实验成功的最重要的因素.
【参考文献】
[1] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811.
[2] Dinh DT, Frauman AG, Johnston CI, et al. Angiotensin receptors: Distribution, signaling and function[J]. Clin Sci(Lond), 2001,100(5): 481-492.
[3] Levy BI. Can Angiotensin II Type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the reninangiotensin system[J]. Circulation, 2004, 109(1): 8-13.
[4] Esler M. The sympathetic system and hypertension[J]. Am J Hypertens Suppl, 2000, 13(6):99S-105S.
[5] Wadhwa R, Kaul SC, Miyagishi M, et al. Knowhow of RNA interference and its applications in research and therapy[J]. Mutat Res, 2004, 567(1):71-84.
[6] Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotide and siRNAs directed against the same targets in mammalian cells[J]. Antisense Nucleic Acid Drug Dev, 2003, 13(1): 1-7.
[7] Miyagishi M, Taira K. Development and application of siRNA expression vector[J]. Nucleic Acids Res Suppl, 2002,(2): 113-114.
[8] Hamada M, Ohtsuka T, Kawaida R, et al. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 30ends of siRNAs[J]. Antisense Nucleic Acid Drug Dev, 2002, 12(5): 301-309.
[9] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs[J]. Methods, 2002, 26(2): 199-213.