3 影像学研究
3.1 菌种 H22肝癌瘤株由北京肿瘤防治研究所提供,每周腹腔注射1次传代。
3.2 肝癌实体瘤模型制作 向每只小鼠左腋窝皮下接种0.2ml含1.4×107个瘤细胞的生理盐水混悬液,7天后待肿瘤长到直径为1~1.5cm时用于实验。
3.3 磁共振成像 将接种上肝癌的小鼠分成两组:第一组,尾静脉注射市售的钆喷酸葡胺注射液;第二组,尾静脉注射钆喷酸葡胺脂质体。将注射药物后的小鼠进行磁共振扫描成像,观察肿瘤部位与正常组织间的区别,同时对两组成像效果进行比较,图像Fig. 1和Fig. 2如下(略)。 由图像可以看出,注射钆喷酸葡胺脂质体(b)小鼠的肝肿瘤部位明显比其他正常组织发亮;而注射液组(a)肝肿瘤部位与正常组织的对比度不明显。因此,钆喷酸葡胺脂质体组与其注射液组相比更适合肝肿瘤的造影,它明显增强了肝肿瘤部位与正常组织间的对比度,影像学研究也表明了钆喷酸葡胺脂质体可作为肝靶向造影剂。
4 讨论
(1)本文曾采用煮沸及流通蒸气法对脂质体进行灭菌,但结果发现,有少量的磷脂聚集现象,并且包封率降低明显。对于脂质体这种含有不耐热和易氧化组分的微分散系统来说,高温灭菌对其破坏性较大,而且也有文献报道水溶性药物的脂质体不宜进行热灭菌[16]。所以本文在制备脂质体的过程中采用无菌操作与膜过滤灭菌方法相结合。
(2)本文进行脂质体包封率测定时,曾采用过柱分离法和鱼精蛋白凝聚法。柱分离时由于钆的紫外特征峰的吸光度小,所以上柱稀释后,在线检测无法确定脂质体和游离药物是否分离完全;而鱼精蛋白凝聚时,发现仍有少量脂质体在水溶液中,这给测定带来很大的误差。由于钆喷酸葡胺极易溶于水,并且分子量也较小,对于透析法测定包封率是非常有利的,游离药物和脂质体可以完全分离开,所以本文采用了透析法测定脂质体的包封率。
(3)影像学研究中,本文采用的模型是异位移植,主要看肿瘤与肝脏在给药后的对比度。肿瘤移植的位置在图片的左上角,注射液组(a)肝肿瘤部位(变亮)与肝组织(变亮)的对比度不明显,而注射钆喷酸葡胺脂质体(b)小鼠的肝肿瘤部位(变亮)与肝组织(基本无变化)的对比度明显,所以表明了钆喷酸葡胺脂质体可作为肝靶向造影剂。
【参考文献】
1 Brasch RC, Weinmann HJ, Wesbey GE. Contrast enhanced NMR imaging: animal studies using gadolinium-DTPA. AJR, 1984,142:625-630.
2 Felix R, Schoerner W, Laniado M, et al. Brain tumors: MR imaging with gadolinium-DTPA. Radiology, 1985,156:681-688.
3 Claussen C, Laniado M, Kazner E, et al. Application of contrast agents in CT and MRI (NMR): their potential in imaging brain tumors. Neuroradiology, 1985,27:164-171.
4 Grossman RI, Wolf G, Biery D, et al. Gadolinium enhanced nuclear magnetic resonance imags of experimental brain abscess. J Comput Assist Tomogr, 1984,8:204-207.
5 Car DH, Brown J, Leung AW, et al. Iron and gadolinium chelates as contrast agents in NMR imaging: preliminary studies. J Comput Assist Tomogr,1984,8:385-389.
6 Runge VM, Schoerner W, Niedorf HP, et al. Initial clinical evaluation of gadolinium-DTPA for contrast-enchanced magnetic resonance imaging. Magn Reson Imaging,1985,3:27-35.
7 Strich G, Hagan PL, Gerber KH, et al. Tissue distribution and magnetic resonance spin lattice relaxation effects of gadolinium-DTPA. Radiology, 1985,154:723-726.
8 Barnhart JL, Kuhnert N, Bakan DA, et al. Biodistribution of GdCl3 and Gd-DTPA and their influence on proton magnetic relaxation in rat tissues. Magn Reson Imaging, 1987,5:221-231.
9 Carr DH, Graif M, Niendorf HP, et al. Gadolinium-DTPA in the assessment of liver tumors by magnetic resonance imaging. Clin Radiol, 1986,37:347-353.
10 Laniado M, Weinmann HJ, Schorner W, et al. First use of Gd-DTPA/ dimeglumine in man. Physiol Chem Phys Med NMR, 1984,16:157-165.
11 Kabalka GW, Buonocore E, Hubner K, et al. Gadolinium-labeled liposomes containing paramagnetic amphipathic agents: targeted MRI contrast agents for the liver. Magn Reson Med,1988,8:89-95.
12 Barsky D, Putz B, Schulten K, et al. Theory of paramagnetic contrast agents in liposome systems. Magn Reson Med, 1992,24:1-13.
13 Vion-Dury J, Masson S, Devoisselle JM, et al. Liposomemediated delivery of gadolinium-diethylene triaminopentaacetic acid to hepatic cells: a P-31 MNR study. J Pharm & Experi Ther, 1989,250(3):1113-1118.
14 Jun-ichi K, Ken-ichi I, Ryohei H, et al. Mannan-coated liposome delivery of gadolinium- diethylene triaminopentaacetic acid,a contrast agent for use in magnetic resonance imaging, 1992,40(9):2565-2567.
15 Tilcock C, Unger E, Cullis P, et al. Liposomal Gd-DTPA: preparation and characterization of relaxivity. Radiology, 1989,171:77-80.
16 Zuidam NJ. Sterilization of liposomes by heat treatment. Pharm Res, 1993,10(11):1591.