[46] Misra A, Conway M F, Johnnie J, et al. Metabolic analyses elucidate nontrivial gene targets for amplifying dihydroartemisinic acid production in yeast[J]. Front Microbiol, 2013, 4:200.
[47] Alper H, Jin Y S, Moxley J F, et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli[J]. Metab Eng, 2005, 7(3):155.
[48] Song H, Kim T Y, Choi B K, et al. Development of chemically defined medium for Mannheimia succiniciproducens based on its genome sequence[J]. Appl Microbiol Biotechnol, 2008, 79(2):263.
[49] Sun Z, Meng H, Li J, et al. Identification of novel knockout targets for improving terpenoids biosynthesis in Saccharomyces cerevisiae[J]. PLoS ONE, 2014, 9(11):e112615.
[50] Zhu M M, Lawman P D, Cameron D C. Improving 1, 3propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of snglycerol3phosphate[J]. Biotechnol Prog, 2002, 18(4):694.
[51] Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nat Biotechnol, 2009, 27(8):753.
[52] Wick L M, Egli T. Molecular components of physiological stress responses in Escherichia coli[J]. Adv Biochem Eng Biot, 2004,89:1.
[53] Harcum S W, Bentley W E. Heatshock and stringent responses have overlapping protease activity in Escherichia coli[J]. Appl Biochem Biotechnol, 1999, 80(1):23.
[54] Gill R T, Valdes J J, Bentley W E. A comparative study of global stress gene regulation in response to overexpression of recombinant proteins in Escherichia coli[J]. Metab Eng, 2000, 2(3):178.
[55] Wang J, Qi Q. Synthetic biology for metabolic engineering――a review[J]. Chin J Biotechnol, 2009, 25(9):1296.
[56] Van Dien S J, Keasling J D. Optimization of polyphosphate degradation and phosphate secretion using hybrid metabolic pathways and engineered host strains[J]. Biotechnol Bioeng, 1998, 59(6):754.
[57] ReddingJohanson A M, Batth T S, Chan R, et al. Targeted proteomics for metabolic pathway optimization:application to terpene production[J]. Metab Eng, 2011, 13(2):194.
[58] Dahl R H, Zhang F, AlonsoGutierrez J, et al. Engineering dynamic pathway regulation using stressresponse promoters[J]. Nat Biotechnol, 2013, 31(11):1039.
[59] Yuan J, Ching C B. Dynamic control of ERG9 expression for improved amorpha4, 11diene production in Saccharomyces cerevisiae[J]. Microb Cell Fact, 2015, 14:38.
[60] Pfleger B F, Pitera D J, Smolke C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nat Biotechnol, 2006, 24(8):1027.