浅析贝叶斯网络在自适应超媒体系统中应用研究(3)
作者:佚名; 更新时间:2014-12-11
(2)条件分割。设变量A的取值范围为:A。,A2,…,,则将原来的贝叶斯网络分割成n个网络,分别是A=A。,A=A2,…,A:。这种方法称作分割,如图2所示。
(3)贝叶斯网络举例。图3显示了一个贝叶斯网络的例子,它模型化了下述的二进制变量:变量a表示病人的年龄大于75岁,变量b表示病人需要戴眼镜,变量c表示病人眼中出现晶状体,变量v表示病人的视力由于眯眼而有所提高,变量s表示病人抱怨视力差,变量r表示病人的视网膜反射可察觉。在这个贝叶斯网络中,变量a与b之间的弧表明相对于其它变量,a与g是直接依赖的。变量a与s之间没有弧相连,它们是通过变量b与C而发生依赖关系。
变量间依赖的强弱由条件概率分布函数Bp量化。例如,当a为真,b为真的概率为P(b=TIa=T)=0.75。当给定了变量的父节点的值后,该变量为假的条件概率可以从此变量为真的条件概率中推导出来,在此就没有给出。