浅析贝叶斯网络在自适应超媒体系统中应用研究(3)
作者:佚名; 更新时间:2014-12-11

   (2)条件分割。设变量A的取值范围为:A。,A2,…,,则将原来的贝叶斯网络分割成n个网络,分别是A=A。,A=A2,…,A:。这种方法称作分割,如图2所示。

  (3)贝叶斯网络举例。图3显示了一个贝叶斯网络的例子,它模型化了下述的二进制变量:变量a表示病人的年龄大于75岁,变量b表示病人需要戴眼镜,变量c表示病人眼中出现晶状体,变量v表示病人的视力由于眯眼而有所提高,变量s表示病人抱怨视力差,变量r表示病人的视网膜反射可察觉。在这个贝叶斯网络中,变量a与b之间的弧表明相对于其它变量,a与g是直接依赖的。变量a与s之间没有弧相连,它们是通过变量b与C而发生依赖关系。

浅析贝叶斯网络在自适应超媒体系统中应用研究

  变量间依赖的强弱由条件概率分布函数Bp量化。例如,当a为真,b为真的概率为P(b=TIa=T)=0.75。当给定了变量的父节点的值后,该变量为假的条件概率可以从此变量为真的条件概率中推导出来,在此就没有给出。

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com