【关键词】 硫胺素
Application of simulated annealing and UV spectroscopy in multicomponent analysis of Vit.B
【Abstract】 AIM: To work out simulated annealing algorithm which bypasses partial but reaches whole optimization and which is combined with ultraviolet (UV) and infrared radiation (IR) spectroscopy method to resolve overlapped peaks and to analyze multiple components. METHODS: Simulated annealing algorithm combined with UV spectroscopy was used to simultaneously determine the four contents in compound pharmaceuticalsVB. RESULTS: The recoveries of Vit.B1, B2, B6 and NA were 100.1%, 100.2%, 99.9% and 100.1% respectively. CONCLUSION: The simulated annealing algorithm combined with UV is suitable for the simultaneous determination of multicomponents in compound pharmaceuticals.
【Keywords】 simulate anneal arithmetic; multivariate analysis; spectrum analysis; compound pharmaceutical products; thiamine; riboflavin; vitamin B6; niacinamide
【摘要】 目的: 研究能跨越局部最优而达全局最优的模拟退火算法,结合紫外可见及红外光谱法进行重叠峰分辨,用于多组分分析. 方法: 将模拟退火算法结合紫外光谱法用于复方药物Vit. B四组分含量测定. 结果: Vit.B1, B2, B6 和烟酰胺(NA)的回收率分别为100.1%, 100.2%, 99.9% 和100.1%. 结论: 模拟退火算法结合紫外光谱法用于多组分复方药物的含量测定,操作简便,结果良好.
【关键词】 模拟退火算法;多元分析;光谱分析;复方药物;硫胺素;核黄素;维生素B6;烟酰胺
0引言
模拟退火(simulated annealing, SA)系寻找全局最优并能跨越局部最优的随机优化算法,它源于对高温物质的退火过程模拟即在给定温度下对微观粒子(如原子)平衡的统计力学模拟. Bohachevsky等针对一般连续函数提出了通用模拟退火法(generalized simulated annealing, GSA); Kalivas等[1]研究了GSA并进行多元校正及波长与样本选择等. 我们将SA及GSA用于多组分分析或重叠谱分辨,获良好结果. 迄今已提出了许多化学计量学优化方法包括单纯形法(SM),共轭梯度法(CG),最速梯度法(OG)等,均难于保证获全局最优解. 我们对此类问题也作了一些探讨即如何获得非线性全局最优解.
1原理和算法
1.1退火过程及Monte Carla模拟固体物质处于熔融状态,所组成的微观粒子处于完全随机排列组合,以足够低的降温速率退火,维持体系在各温度下微粒达平衡则体系服从Boltzmann分布:fi=aiexp(-Ei/Ti)=(1/hi)exp(-Ei/bTi)(1)此处Ti为温度,Ei为能量,i指微粒排列状态,ai为常数,hi为分函数,b为Boltzmann常数,fi为状态i出现的概率. 随着温度Ti降低,高能微粒的排列状态出现的概率越来越小,最终趋于零. 微粒状态按Boltzmann分布趋于能量最低的状态称为基态. Monte Carlo方法模拟给定温度下微粒达热平衡的过程. 对微粒的当前状态随机地进行微扰. 令Ea和Eb分别为当前和微扰新状态的能量,能差为△E=Eb-Ea. 若Ea>Eb,则接受新状态并无条件代替当前状态;若Ea≤Eb,则以概率为fi=exp(-[Eb --Ea]/Ti)接受这一不利状态作为当前状态. 继续徐徐降温并重复Metropolis抽样,直到获得最低能量状态.
1.2模拟算法将微粒状态对应于待优化组合参数x;则能量E相当于目标函数J,退火温度T及Boatsman常数b对应于随机搜索程度控制参数B,具体步骤如下:① 设定初始优化状态xa并计算其目标函Ja=J(xa); ② 对x施加一随机微扰的新状态xb,计算Jb=J(xb)及能差ΔJ=Jb-Ja; ③ 比较Ja与Jb,若Ja>Jb,则无条件接受新状态xb为当前状态,若Ja
1.3通用算法将J=J(x)定义为多维连续函数,并寻优得某状态x0使J(x0)达最优. 设当前状态为xa,产生随机状态xb xb=xa+υ・S(2)此处υ为方向矢量,S为变化步长,任意产生n个N(0, 1)随机数Wi(i=1, 2,…n),计算其余弦方向υi=wi/Σwi2(3)则微扰新状态为xb=xa+S・υxbi=xai+S・υi(4)GSA取消了SA中改变B的控温循环,并修正接受概率为f=exp[-B・ΔJ・(DJ)a]=exp[-B・ΔJ/DJ](5)式中B仍为控制因子,ΔJ=Eb-Ea为微扰能差,DJ=Ea-E0为相对能差, a<0为任意负数. 当a=0时GSA还原为SA. 常取a=-1,接受概率降低,有利收敛. 当随机搜索接近全局最优时,应不再接受不利状态即接受概率几近零. 步长S在GSA中通常不变,其优化精度往往不高;文献[2]论述了GSA的步长可变性. 我们逐步降低步长S,信捷职称论文写作发表网,以提高优化精度. J0=J(E0)为全局最优点(local optimum)对极大化问题J0=Jmax; 对极小化问题J0=Jmin. 当J0已知时可直接选取;当J0未知或难预先确定,则可先尝试某值,再据运算予以调整. 因此GSA提高了优化精度和收敛速度.
1.4控制参数B前已述及,B的选择是SA及GSA的关键. Bohachevsky等建议选择适当的B使接受概率f∈[0.5,0.9],常使f=0.8. 即接受概率为80%,拒绝概率为20%. B选择不当,则使f过低而陷入局部最优;或使f过高而完全随机游走难于收敛.
1.5多元校正多元校正的定量模型以最常见的多组分光谱分析为例[2,3]表示如下:
标量: Aij=Σk=nk=1Hikxkj+Eij(i=1~l, j =1~m, k=1~n)(6)
矩阵:Al×m=Hl×nxn×m+El×m(7)式中Aij为波长j(j=1~m)处样本i(i=1,2,…l)的吸光度,Eij为相应量测噪音,Hik为组分k(k=1,2,…n)在波长j处的吸光系数,xkj为组分k在样本j中的浓度. 它们分别构成相应矩阵,在进行校正时,Hik或Hl×n可由纯组分直接测定获得也可由系列标样数据处理间接确定.
1.6多元预测由未知试样的吸收光谱量测数据A*ij',并依据已获得的量测系数(Hik或Hlxn),可预测未知浓度即实现多组分同时定性定量.
2实验部分
2.1仪器和试剂UV2501型紫外可见分光光度计(日本岛津)及1 cm石英液池用于光谱测定;计算机工作站用于编制适用SA和GSA及扫描算法程序. Vit.B1, B2, B6,烟酰胺(nicotinamide, NA)及泛酸钙等均为分析纯试剂或符合药典要求的原料,中国药典方法及超声促溶配成储备液蔽光保存;以冰乙酸和NaAc配成pH4.0的缓冲液;其他试剂均为AR级以上.
2.2方法
由适量储备液配制成纯组分标液和多分混合液, 在紫外可见分光光度计上测量紫外光谱(Fig 1), 在扫描波长190~390 nm,狭缝宽度1.0 nm, 220~320 nm, 1.0 nm间隔读取光谱数据, 输入计算机处理,以纯组分标样计算吸光系数后取均值. 对部分混合样进行同时定量分析.
3结果和讨论
3.1紫外光谱四组分Vit. B (Vit.B1, B2, B6和NA)光谱(Fig 1)相互重叠严重,需分离定量或作多元分析.
3.2测试条件优化经实验考察溶液酸度影响,发现pH 4.0±0.5范围内吸光度基本恒定,pH 升高则吸光度降低,可能是物种稳定性下降所致.故采用适宜酸度pH 4.0为测试介质.考察测量波长影响,发现近紫外在220~320 nm数据稳定性好(t≥2 h),且具有良好的线性加和性.
3.3算法参数选择影响以对称函数f=f(x1, x2)=x21+nsin2π|x1|+2x22+2sin2π|x2|作为目标函数(最小化)为例,考察GSA中循环步长S及控制参数B等对优化求解精度的影响. 该最小化目标函数有值为零的全局最优点(x1=0, x2=0)和若干局部极优点.假定优化变量的约束区域为-1≤x1, x2≤1,就此对称函数任取一点(x1=1, x2=1),实际为离全局最优点最远的四点之一,为初始点进行优化搜索.取B=1.0,步长固定为