胰岛素样生长因子
作者:佚名; 更新时间:2014-12-13

  胰岛素样生长因子(insulin-like growth factors, IGFs)从发现到现在已经有40多年了。其中的IGF-Ⅰ最早曾被称为硫化因子,后来又称之为生长介素。胰岛素样生长因子参与体内几乎每个器官的生长和功能。


  一、IGFs基础生化和生理作用


  胰岛素样生长因子家族有三种肽类激素(或生长因子):胰岛素(Ins)、IGF-Ⅰ、IGF-Ⅱ。人类IGF-Ⅰ基因位于12号染色体,IGF-Ⅱ基因位于11号染色体。人体内许多组织可以合成、分泌IGFs,但循环中的IGFs则主要是由肝脏分泌的。IGF-Ⅰ是70个氨基酸的单链多肽,分子量7649,和胰岛素原有50%的序列相同。但和胰岛素不同的是,它在循环中仍保留相应于胰岛素C肽的那部分,并有一延长的羧基端。胰岛素的半衰期是几分钟,循环中的浓度在pmol水平;IGF-Ⅰ在循环中的浓度在nmol水平(人约为25nmol/L)。IGF-Ⅱ和IGF-Ⅰ有70%的序列相同,人血清中的浓度更高(约100nmol/L)。血中IGFs只有1%左右是游离的,其余都和胰岛素样生长因子结合蛋白(insulin-like growth factor binding protein, IGFBP)结合,这种蛋白调节IGFs作用的发挥。在人脑、血小板、子宫、胎儿和牛奶中还存在一种短链IGF-Ⅰ,它的N端较正常IGF-Ⅰ少3个氨基酸,这样它和IGFBP的结合力降低,其生物学活性比正常IGF-Ⅰ要大。


  IGFs通过IGF受体起作用。IGF受体有3种:IGF-Ⅰ受体、IGF-Ⅱ受体和IGF/Ins杂合受体。IGF-Ⅰ受体基因位于15号染色体,信捷职称论文写作发表网,结构和胰岛素受体的结构相似:是由2个α亚基(706个氨基酸,相对分子质量约140000)和2个β亚基(626个氨基酸,相对分子质量约95000)通过二硫键连接而成的四亚基结构。α亚基位于细胞外,是配体结合部位,对IGF-Ⅰ的亲和力较高(Kd 0.2~1.0nmol/L),对IGF-Ⅱ的亲和力要低2~15倍,对胰岛素的亲和力则要低100~1000倍。β亚基包括两部分:跨膜部分和细胞内部分;细胞内部分具有酪氨酸蛋白激酶活性,当受体和配体结合后,该部分结合并激活胰岛素受体底物-Ⅰ(insulin receptor substrate-Ⅰ IRS-Ⅰ),IRS-Ⅰ再和细胞内其它传递信息的物质作用,从而产生生物学效应。IGF-Ⅱ受体(也是6-磷酸甘露糖的受体)和IGF-Ⅰ受体不同,它是单条肽链结构,且无内在的酪氨酸蛋白激酶活性。IGF-Ⅱ受体对IGF-Ⅱ的亲和力很高(Kd 0.017~0.7 nmol/L),对IGF-Ⅰ的亲和力要低500倍,几乎不结合胰岛素。它介导IGF-Ⅱ的摄取和降解,至于是否具有信息传导作用,目前还不清楚。IGF/Ins杂合受体,能和胰岛素及IGF-Ⅰ结合,对IGF-Ⅰ的亲和力和IGF-Ⅰ受体相似,对胰岛素的亲和力则要低15~50倍,它在体内到底有何作用仍不清楚。两种IGFs大多和IGF-Ⅰ受体结合,在浓度较高时,胰岛素和IGFs在各自受体间有交互作用。激活胰岛素受体和IGF-Ⅰ受体在细胞内引起相似的初始反应。然而,胰岛素主要调节代谢而IGFs主要调节生长和分化,这些激素在细胞内引起生物效应的最后通路仍不清楚。


  本世纪80年代中期到90年代初,成功地克隆了IGFBP1-6并弄清了它们的氨基酸序列,它们有35%的序列是相同的〔1〕。最近又发现了至少四种IGFBP(IGFBP7-10),它们和IGF的亲和力较前几种IGFBP要低。IGFBP主要作用有:(1)调节IGFs的作用;(2)在特定的细胞基质中储存IGFs;(3)不依赖IGF而发挥作用〔1〕。IGFBP主要在肝脏合成,只和IGFs结合,而不和胰岛素结合。IGFBP中,IGFBP-3结合血清中75%~80%的IGFs。


  某些IGFBP和胰岛素样生长因子的亲和力要比IGF受体更强,因而可阻止IGFs的作用。磷酸化蛋白水解酶能降低IGFBP对IGFs的亲和力,增加游离IGFs浓度,这样IGFs和IGF-Ⅰ受体结合也随之增加,其生物学作用便也增加。


  IGFs是胚胎发育中必须的。它在胚胎发育过程中所起的作用比生长激素还重要。在两细胞阶段就能检测到IGF-Ⅱ及其受体。它是着床 前的最重要的生长因子。生长激素或生长激素受体基因突变时,胚胎发育仅稍微迟缓,而IGF-Ⅰ基因突变的小鼠胚胎发育严重滞后。1996年,Woods等〔2〕报道了一例IGF-Ⅰ基因缺失的纯合子男孩,胚胎发育严重滞后,出生体重1.4Kg(比正常均值低5.4s),身长37.8 cm(比正常均值低3.9s)。出生后IGF-Ⅰ对调节生长有重要作用,而IGF-Ⅱ的生理作用还不清楚。


  GH/IGF-Ⅰ轴正常时:生长激素通过肝脏生长激素受体促进肝脏IGF-Ⅰ基因的表达从而促进IGF-Ⅰ的合成和释放;IGF-Ⅰ反馈抑制垂体生长激素的释放。血清IGF-Ⅰ的浓度和血清生长激素水平在24小时内大致平行。肝脏如何调节IGF-Ⅱ的合成仍不清楚。IGF-Ⅰ能促进细胞增殖、分化、成熟,并可抑制细胞凋亡;介导生长激素的大部分作用;促进生长和合成代谢;并且有降低血糖、调节免疫等作用。


  器官、组织局部也可产生IGFs。它们通过自分泌、旁分泌的方式发挥作用。这种局部的IGFs在肾脏、骨胳和神经等器官、系统有着重要作用。在肾脏,IGF-Ⅰ扩张微阻力血管、增加肾小球滤过率、增加肾小管钠、磷的吸收。动物试验发现:IGF-Ⅰ在慢性肾衰可延缓肾衰进展;在急性肾衰,能加速肾功能的恢复〔3〕。


  局部IGFs仅部分地受生长激素调节。骨中IGF-Ⅰ的产生受GH、甲状旁腺素(PTH)和性激素调节。而在生殖系统,性激素是局部IGF-Ⅰ生成的主要调节因子。


  二、病理状态下IGF系统的改变


  1.IGF-Ⅰ:多种因素如年龄、性别、营养状态和生长激素的释放都影响血清IGF-Ⅰ浓度。出生时,其浓度是低的,在儿童和青春期逐渐增长,20岁以后开始下降。这些变化和GH的释放是平行的:GH不足时,血清IGF-Ⅰ浓度降低,而GH分泌过多时,IGF-Ⅰ浓度增高。尽管肢端肥大症的临床特征和血清IGF-Ⅰ浓度并非紧密相关,但测定血清IGF-Ⅰ在诊断GH不足和肢端肥大症仍是有用的。


  营养状态影响IGF-Ⅰ浓度,它是循环和组织IGFs系统的重要调节因子〔4〕。空腹和营养不良时,尽管生长激素正常或升高,但血清IGF-Ⅰ水平降低,肝脏、肠道等组织IGF-Ⅰ mRNA及IGF-Ⅰ水平降低。这是由GH抵抗、IGF-Ⅰ基因转录和翻译缺陷及mRNA不稳定等引起的。进食和营养状态的改善能恢复IGF-Ⅰ水平。营养状态影响生长激素和IGF-Ⅰ的治疗作用。在其它状态,如严重创伤和败血症时,也有GH抵抗,此时血清IGF-Ⅰ浓度也降低。


  在1型、2型糖尿病,GH/IGF-Ⅰ轴是异常的,GH增高、IGF-Ⅰ降低〔5〕。在1型糖尿病,肝脏对GH抵抗,肝脏IGF-Ⅰ产生减少;而同时IGFBP-Ⅰ生成增多,IGFBP-Ⅰ能结合并抑制IGF-Ⅰ发挥作用。这样IGF-Ⅰ作用降低反馈性地引起了生长激素增高。GH释放增多会通过拮抗外周组织胰岛素的作用而加重高血糖。同时IGF-Ⅰ作用降低也导致了幼年或青少年起病的1型糖尿病患者生长发育迟缓。在控制不佳的2型糖尿病,也同样存在GH的高释放,拮抗外周组织胰岛素的作用。在任何一种糖尿病,给予IGF-Ⅰ都可以改善血糖控制,并通过降低血清GH来改善胰岛素抵抗。此外,在2型糖尿病病人,IGF-Ⅰ能减少胰岛素的分泌,防止高胰岛素血症,从而提高胰岛素受体的表达。


  IGF-Ⅰ是调节骨细胞功能和代谢的重要因子,如:它能减少骨胶原退化、增加骨质沉积,促进成骨细胞分化、成熟及补充〔6〕。IGF-Ⅰ可能介导PTH的作用。骨质疏松的病人,血清IGF-Ⅰ水平降低,IGF-Ⅰ水平和骨密度相关〔6〕。最近有研究发现1型糖尿病患者的骨质减少可能和IGFs系统异常有关〔7〕。


  2.IGF-Ⅱ〔8〕:一些非胰岛细胞肿瘤分泌:“大IGF-Ⅱ”,而引起低血糖。这些肿瘤分泌的是IGF-Ⅱ前体,分子量较IGF-Ⅱ大。它抑制生长激素的释放;同时,受GH调节的IGFBP-3和酸不稳定性蛋白亚单位(acid labile subunit, ALS)减少,IGF-IGFBP3-ALS减少(这种复合体可阻止

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com