数学课堂教学中如何预设有效问题(2)
作者:佚名; 更新时间:2014-10-22

  二、预设问题要符合学生的“最近发展区” 理论

  研究表明,知识处于“最近发展区”时,最能激发学生的学习动机。教师在预设问题时,不考虑学生现有的生活经验、知识基础、认知发展水平和思维发展水平,预设的问题坡度太大,超出学生的“最近发展区”,过于复杂,从头到尾受益的学生寥寥无几,提问也只能流于形式、走过场,结果多数情况下教师自问自答。比如说某教师在上浙教版八年级(下)数学《一元二次方程的解法》第三课时——公式法解一元二次方程中,先要求学生用已经学过的配方法解两个方程:x2+15=10x ;3x2-12x=6,在学生解完这两个方程后,教师说:大家能用配方法来解关于x的方程ax2+bx+c=0吗?结果全班基本没有人解出。教师原本想用配方法解系数为常数的一元二次方程来作为解系数为字母的一元二次方程作一个铺垫,但由于教师没有充分考虑到解方程ax2+bx+c=0的复杂性,也没有充分认识到这个问题大大超出学生的“最近发展区”,因而没有为解方程ax2+bx+c=0预设引导性的问题,最后教师不得不自己一步一步讲解。

  一堂课中多有几个这样的问题,学生就对这节课失去了信心和兴趣,多有几节这样的课,学生就对这门学科失去了信心和兴趣,教学效果可想而知。有经验的教师在预设问题时,能把预设问题控制在学生的“最近发展区”。一教师在上浙教版七年级(下)数学《分式方程》时,在上课导入时这样预设四个解方程的题目:

  听课的很多老师当时就在嘀咕:在学生连分式方程的概念还没有了解教师就给出了分式方程让学生解,这样做不恰当。其实,事实说明,这位教师这样预设问题问题,恰恰把握住了学生的“最近发展区”。学生在有解一元一次方程的基础上很容易就解出了第(1)、(2)小题。学生在解第(3)小题时,有的凑出了答案,有很多学生就是两边乘了x解出了方程。其实学生解第(2)小题时利用了去分母解了方程,这无形就为解第(3)小题作好了铺垫,学生只要在理解“字母表示数”的基础上就能利用去分母解第(3)小题。教师就是抓住了这点,放手让学生自己去解,“学习过程就不是被动地接受知识,而是主动构建知识的过程”。

  三、预设问题要避免低级庸俗,应具有启发引导性

  在新课程“一波未平,一波又起”改革的浪潮下,有的教师为了体现启发式原则,达到一种双边互动充分、课堂气氛热烈的效果,经常大量设问,于是不由自主地提一些不疼不痒的问题。例如:一教师在讲“雉兔同笼”问题时,提出“雉就是我们现在说的什么?”“雉有几只脚几只头?”“上有三十五头,下有九十四足的意识是什么?”这样一些不是问题的问题,还有“对不对”、“是不是”、“好不好”、“行不行”等问题。这种问题缺少启发性,难以引起学生深层次的思考,是不相信学生的能力及其主观能动性,是对学生主体性和创造性的漠视。“有疑而问”本是天经地义,但这种浅显的问题,往往问而无疑,学生对答如流,表面上互动得轰轰烈烈。但实际效果如何呢?学生从这些问题中得到了什么呢?这种设问除了在形式上给人一种热闹的感觉外,没有什么教学价值。除此,有些教师预设问题太庸俗。一教师在介绍圆柱和圆锥的三视图画法后,他给学生提出这样一个问题:“谁能画出人的三视图,就画我们的校长?”结果一学生在黑板上画了三个椭圆,引得全般哄堂大笑。这样的问题令人啼笑皆非,庸俗及至。

  有经验的老师设问能提纲挈领、纲举目张,牵一发而动全身,提出的问题恰当、对学生数学思维有适度启发,能引导学生思考和探索,经历观察 、实验、猜测、推理、交流、反思等理性思维的基本过程,切实改进学生的学习方式。一教师在讲三角形三边关系时,让学生带好长度分别为3cm、4cm、7cm、10cm的小木条,预设以下个问题让学生分小组后思考讨论: (1)能拼成几个三角形,三角形的边长分别是什么?(2)哪三根不能拼成三角形?这三根的长度都有什么关系?(3)三根木条符合什么要求才能拼成三角形?教师层层设问、逐步推进,充分突出学生“做数学”的同时,启发引导了学生主动发现三角形三边的关系,而不是简单的让学生记忆“三角形的任意两边之和大于第三边,任意两边小于第三边”的定理。

核心期刊快速发表
Copyright@2000-2030 论文期刊网 Corporation All Rights Reserved.
《中华人民共和国信息产业部》备案号:ICP备07016076号;《公安部》备案号:33010402003207
本网站专业、正规提供职称论文发表和写作指导服务,并收录了海量免费论文和数百个经国家新闻出版总署审批过的具有国内统一CN刊号与国际标准ISSN刊号的合作期刊,供诸位正确选择和阅读参考,免费论文版权归原作者所有,谨防侵权。联系邮箱:256081@163.com