小学数学基本数学思想的学习与思考
小数教材体系包括两条主线:其一数学知识;其二,数学思想。教者只要看教材,就能明确前者;后者有掌握小学数学思想方法,才能明确为什么要这样写,才能从整体上、本质去理解教材,也才能科学地、灵活地设计教学方法,提高课堂教学效率。基于《义务教育数学课程标准(2011年版)》,提出“四基”的理念,基础知识、基本技能、基本思想、基本活动经验。什么是基本思想?有哪些基本思想?小学数学每册教材每一课时,都有渗透哪些基本思想?我们努力作一些梳理,便于今后每位数学教师都能有参照。因为使学生获得数学的基本思想是数学课程的重要目标。
我们知道,数学课程固然应该教会学生许多必要的数学知识,但是绝不仅仅以教会数学知识为目标,更重要的是让学生在学习这些结论的过程中获得数学思想。数学思想是数学科学发生、发展的根本,是探索研究数学所依赖的基础,也是数学课程教学的精髓。数学思想的内涵十分丰富,也有学者通俗地把“数学思想”说成“将具体的数学知识都忘掉以后剩下的东西”。《课程标准(2011年版)》在这里的措词为数学的“基本思想”,而不是数学的“基本思想方法”,是因为后者更多地涉及一些有程序、步骤、路径的可操作的“方法”,如换元法、代入法、配方法等,它们属于更为具体的层次。这里在“思想”的前面加了“基本”二字,一方面强调其重要;另一方面也希望控制其数量——基本思想不要太多了。《课程标准(2011年版)》中所说的“数学的基本思想”主要指:数学抽象的思想、数学推理的思想、数学建模的思想。
数学抽象的思想:抽象是对同类事物抽取其共同的本质属性或特征,舍去其非本质的属性或特征的思维过程。人们在思维中,抽象过程是通过一系列的比较和区分、舍弃和收括的思维操作实现的。人们在思维中对对象的抽象是从对对象的比较和区分开始的。所谓比较,就是在思维中确定对象之间的相同点和不同点;而所谓区分,则是把比较得到的相同点和不同点在思维中固定下业,利用它们把对象分为不同的类。然后再进行舍弃与收括,舍弃是指在思维中不考虑对象的某些性质,收括则是指把对象的我们所需要的性质固定下来,并用词表达出来。这就形成了抽象的概念,同时也就形成了表示这个概念的词,于是完成了一个抽象过程。
数学推理的思想:推理是从一个或几个已有的判断得出另一个新判断的思维形式。推理所根据的判断叫前提,根据前提所得到的判断叫结论。推理分为两种形式:演绎推理和合情推理。演绎推理是根据一般性的真命题(或逻辑规则)推出特殊性命题的推理。演绎推理的特征是:当前提为真时,结论必然为真。演绎推理的常用形式有:三段论、选言推理、假言推理、关系推理等。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果。合情推理的常用形式有:归纳推理和类比推理。当前提为真时,合情推理所得的结论可能为真也可能为假。
数学建模的思想:数学建模就是指用数学的语言描述实际现象,通过设计数学方法,最终解决实际问题的整个过程。在现实中为了要解决实际问题,在实际问题与数学之间架设一座方便之桥。并用数学语言概括地或近似地描述现实世界事物的特征、数量关系和空间形式的一种数学结构。通过数学的计算、分析、找到解决问题的有效途径。数学模型的主要表现形式是数学符号表达式和图表,因而它与符号化思想有很多相通之处,同样具有普遍的意义。不过,也有很多数学家对数学模型的理解似乎更注重数学的应用性,即把数学模型描述为特定的事物系统的数学关系结构。
数学模型是运用数学的语言和工具,对现实世界的一些信息进行适当的简化,经过推理和运算,对相应的数据进行分析、预测、决策和控制,并且要经过实践的检验。如果检验的结果是正确的,便可以指导我们的实践。
基于上述数学基本思想又可以演变、派生、发展出一些思想,主要体现如下:
一、由“数学抽象的思想”派生出来的有:分类的思想、集合的思想、数学形结合的思想,变中不变的思想、符号表示的思想、对称的思想、对应的思想、有限与无限的思想等。
二、由“数学推理的思想”派生出来的有:归纳的思想、演绎的思想、公理化思想、转换化归的思想、联想类比的思想、逐步逼近的思想、代换的思想、特殊与一般的思想等。
三、由“数学建模的思想”派生出来的有:简化的思想、量化的思想、函数的思想、方程的思想、优化的思想、随机的思想、抽样统计的思想等。
对各个数学思想的内涵界定
1、分类的思想:所谓分类,就是根据对象的某一属性特征把它们不重复不遗漏地划分为若干类别。分类的思想是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想。分类以比较为基础,比较是分类的前提,分类是比较的结果。
所谓数学分类讨论方法,就是将数学对象分成几类,分别进行讨论来解决问题的一种数学方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性, 能训练人的思维条理性和概括性。分类思想可不象一般的数学知识那样,通过几节课的教学就可让学生掌握应用。而是要根据学生的年龄特征,学生在学习的各阶段的认知水平,逐步渗透,螺旋上升,不断的丰富自身的内涵,从而达到利用数学分类讨论方法来解决问题的目的。
2、集合的思想:把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。给定的集合,它的元素必须是确定的,即任何一个事物是否属于这个集合,是明确的。如“学习成绩好的同学”不能构成一个集合,因为构成它的元素是不确定的;而“语文和数学的平均成绩在90分及以上的同学”就是一个集合。一个给定集合中的元素是互不相同的,即集合中的元素不重复出现。只要两个集合的元素完全相同,就说这两个集合相等。
集合的表示法一般用列举法和描述法。列举法就是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。描述法就是在花括号内写出规定这个集合元素的特定性质来表示集合的方法。列举法的局限性在于当集合的元素过多或者有无限多个时,很难把所有的元素一一列举出来,这时描述法便体现出了优越性。此外,有时也可以用封闭的曲线(文恩图)来直观地表示集合及集合间的关系,曲线的内部表示集合的所有元素。