小学数学基本数学思想的学习与思考
16、特殊与一般的思想:所谓特殊与一般的思想包括两个方面:通过对某些个体的认识与研究,逐渐积累对这类事物的了解,再逐渐形成对这类事物的总体认识, 发现特点,掌握规律,形成公式,由浅入深,由现象到本质,由局部到整体,从实践到理论,这种认识事物的过程就是由特殊到一般的认识过程;在理论指导下,用已有的规律解决这类事物中的新问题,这种认识事物的过程就是由一般到特殊的认识过程。由特殊到一般再由一般到特殊反复认识的过程,就是人们认识世界的基本过程,这一过程在数学的认识活动中有着重要的应用。
17、简化的思想:简化是一定范围内缩减对象(事物)的类型数目,使之在一定时间内足以满足一般需要的标准化形式。简化一般是在事后进行的,是在不改变对象质的规定性,不降低对象功能的前提下,减少对象的多样性、复杂性。
18、量化的思想:量化思想方法在数与代数领域的运用成果是“数”(字母和“式”是数的代表),而在几何、统计、概率中的运用成果是“量”——几何量与统计量。量化就是数学的一个基本思想方法,数学不管研究哪个领域,都会贯彻这个战略;而在不同领域,贯彻的具体策略又会有所差别。
例如:运用量化思想方法得出几何量“面积”。
首次研究面积是三年级下册第九单元《长方形和正方形的面积》,教材是按如下顺序展开的。
第一步提出研究动因,74页该单元第一句话:“看看黑板的表面和课本的封面,说说哪一个面比较大,哪一个面比较小”——要研究和比较这一点,需要给“这一点”即这个几何属性取个名字。
第二步“取名字”即命名一个几何量,故紧接着说:“黑板表面的大小是黑板的面积”,即物体表面的大小叫面积。
第三步给这个几何量赋值即使每个图形表面的“面积”数值化。在量化程序中赋值是奠基的、最关键的一步,所以教材不吝用5页篇幅来细致展开:
74-78页比较多组图形的面积大小,“黑板和课本”、“桌面和椅子面”、“手掌和树叶”、“正方形和长方形”、“四个省在地图上的图形”、“四个不规则多边形”等等,各组比较标准不一、只管本组谁大谁小。
但这些活动中暗藏一大转折——力图确定一个统一、公用的比较标准:75页例题,比较等宽的正方形和长方形面积用了两个方法,一是“我用重叠的方法”,二是 “我用同一张纸分别去量”——这“二”就是转折;76页《想想做做》第3题,四个不规则多边形比较大小,因为都画在方格纸上,于是算算它们分别占了多少格就行了——“格”这个小正方形就成了统一、公用的比较标准。
转折的成果是规定面积单位,作为比较任何物体表面面积大小的共同标准,即78页中间那句话:“为了准确测量或计算面积的大小,要用同样大小的正方形的面积作为面积单位。边长是1厘米的正方形,面积是1平方厘米”,以及第79页一句话“边长是1米的正方形,面积是1平方米”。
用面积单位给“面积”这个几何量作了赋值,就能计算任何物体表面的面积,于是得出83页“长方形的面积=长×宽”和“正方形的面积=边长×边长”。
第四步规定面积这个几何量本身的加法计算:“面积”可加,“面积+面积=面积”。教材第82页探究长方形面积公式时已经未加证明地应用了这个可加性,在以后计量多面体表面积时也予以了应用。
第五步探究面积本身的其他运算——这一步看不到,为什么?因为“面”可分割即面积可减,很显然故不用啰嗦;面积的乘、除则不允许,因为面积与面积的积或商没有几何意义(长度不同,其和、差仍是长度——如折线长与多边形周长,积则是面积)。
量化程序的第六步导出算律无必要,因为计算时处理好单位之后只剩下纯数值计算,故“数与代数”领域已得出的五条算律都可应用。
19、函数的思想:函数思想的核心是事物的变量之间有一种依存关系,因变量随着自变量的变化而变化,通过对这种变化的探究找出变量之间的对应法则,从而构建函数模型。函数思想体现了运动变化的、普遍联系的观点。
20、方程的思想:方程思想的核心是将问题中的未知量用数字以外的数学符号(常用χ、y等字母)表示,根据相关数量之间的相等关系构建方程模型。方程思想体现了已知与未知的对立统一。
21、优化的思想:优化思想就是在有限种或无限种可行方案(决策)中挑选最优的方案(决策)的思想,是一个很重要的数学思想。它不仅在实际应用中有明显的价值,而且在小学数学教材要渗透的思想方法中所占比例相对较大。
优化思想”在小学数学人教版实验教材中处处可见渗透痕迹,如计算教学中的“算法优化”、解决问题教学中的“策略优化”以及统计教学中的“统计方法优化”等等。
22、随机的思想:随机思想是认识随机现象和统计规律的重要思想。在自然界和现实生活中,一些事物是相互联系和不断发展的。在它们彼此间的联系和发展中, 根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象,另一类是不确定性的现象。随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。比如掷硬币,每一次投掷很难判断是哪一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。
23、抽样统计的思想:统计思想主要体现在把握数据的能力,养成会用数据“说事”,收集数据,整理数据,分析数据,从数据中提取信息,并利用这些信息说明问题,在这个过程中,形成对数据的敏感,养成会用数据“说事”的习惯。
【小学数学基本数学思想的学习与思考】相关文章:
1.小学数学建模思想的渗透论文
2.小学数学创新思想的培养
3.小学数学培养学生模型思想的方式
4.小学数学教育教学中分类思想的应用论文
5.小学数学教学渗透数学思想的方法论文
6.小学数学教学中数学思想的渗透路径
7.小学数学教学中数学思想的渗透分析论文
8.小学数学教学中数学思想的渗透分析