“尚未成功”的突破(2)
作者:佚名; 更新时间:2014-10-22
x≤f(x)≤(x2+1)/2
①
对一切实数x都成立?若存在,求出a、b、c;若不存在,说明理由.
讲解:作者从解两个二次不等式
开始(解法1),经过数形结合的思考(解法2)等过程,最后“经学生相互讨论后得到巧解”(解法4):由基本不等式
(x2+1)/2≥(x+1)/22≥x
②
对一切实数x都成立,猜想
f(x)=(x+1)/22.
③
经检验,f(x)满足条件f(-1)=0,所以f(x)存在,a=(1/4),b=(1/2),c=(1/4).
我们不知道命题人的原始意图是否只考虑“存在性”,按惯例,“若存在,求出a、b、c”应该理解为“若存在,求出一切a、b、c”.从这一意义上来看上述巧解,那就存在一个明显的逻辑疑点:诚然,③式是满足①的一个解,但是在x与(x2+1)/2之间的二次函数很多,如
f1(x)=(1/2)x+(1/2)(x2+1)/2,
f2(x)=(1/3)x+(2/3)(x2+1)/2,
f3(x)=(1/4)x+(3/4)(x2+1)/2,
……
这当中有的经过点(-1,0),有的不经过点(-1,0),巧解已经验证了f1(x)经过点(-1,0)从而为所求,我们的疑问是:怎见得其余的无穷个二次函数就都不过点(-1,0)呢?
也就是说,“巧解”解决了“充分性”而未解决“必要性”,解决了“存在性”而未解决“惟一性”.究其原因,是未找出x与(x2+1/2)之间的所有的二次函数.抓住这一尚未成功的环节继续思考,我们想到定比分点公式,①式可以改写为
上一篇:数学学习与数学课程改革
下一篇:康托尔与集合论