3自适应信号处理的应用及Matlab仿真
3.1 通信中的自适应噪声抵消
在通信和其他许多信号处理应用问题中,接受信号中往往伴随着干扰和噪声,从而显著影响接受信号的可靠性,或者导致误码率上升。一般来说,干扰和噪声的存在总是难免的。信号处理技术的核心问题之一就是从受到干扰污染的信号中估计,检测或者恢复出原始信号。而自适应噪声抵消的基本原理就是将被噪声污染的信号与参考信号进行抵消运算,从而消除带噪信号中的噪声。其关键问题是自适应噪声抵消系统的参考信号一定要与待消除的噪声具有一定的相关性,而与要检测或者提取的信号不相关。自适应噪声抵消系统经过自适应系统的控制和调整,系统能够有效地从噪声中恢复出原始信号。
作为自适应信号处理领域的重要分支之一,它已经受到了人们的普遍关注并得到了广泛的应用。
3.1.1 自适应噪声抵消系统的基本原理
下图为典型自适应噪声抵消系统的原理框图:
图3.1.1 自适应噪声抵消系统
为噪声u(n)的滤波信号。则整个自适应噪声抵消系统的输出y(n)为式(3.1.1.1)
式(3.1.1.2) 也不相关,故有 式(3.1.1.3) 式(3.1.1.4) 也达到最小,即自适应噪声抵消系统的输出信号y(n)与有用信号s(n)的均方误差最小。 。这时,自适应滤波器自动地调节其权值,将u(n)加工成v(n),与原始输入信号d(n)中的v(n)相减,使输出信号y(n)的噪声完全被抵消,而只保留有用信号s(n)。但是自适应滤波器能够完成上述任务的必要条件为:参考输入信号 必须与被抵消的噪声v(n)相关。3.1.2 自适应噪声抵消系统Matlab仿真
以下仿真采用图3.1.1的结构,分别运用LMS,NLMS和RLS循环算法进行噪声消除。
图3.1.2
仿真得出三种自适应滤波算法提取正弦信号的曲线图。可以看出系统能基本还原出原始信号,达到噪声抵消的效果。但是用RLS算法提取的正弦信号质量要好,其中LMS算法提取的信号效果最差,存在没有滤除的随机噪声部分较多,而NLMS算法要比LMS的效果要好,但比起RLS算法在估计精度上有些波动,存在一定的残余误差,即有一定失调。
3.2 自适应陷波滤波器
在通信系统和其他电子系统中,经常会受到诸如50Hz工作频率等单频干扰或者窄带干扰的影响。这种干扰的存在,严重影响了信号的接收或者检测的可靠性和正确性,因此必须加以消除。陷波滤波器是消除这种干扰的有力工具,当自适应噪声抵消系统的参考输入为单一频率正弦信号时,则系统可以构成自适应陷波滤波器。
3.2.1 自适应陷波滤波器的原理
自适应陷波滤波器具有陷波中心频率,且该频率与其参考输入的正弦信号的频率相同。另一方面,自适应陷波滤波器还能够随着干扰频率的变化,自动地修正系统自身参数来跟踪这种变化。典型的单一频率自适应陷波滤波器的原理图如图(3.2.1)所示,图(3.2.1)表示一个具有两个自适应实权的自适应噪声对消器。它等效于有一个复权的噪声对消系统,即用两个实权达到同时调整单一频率正弦波的幅度和相位,以消除干扰的目的。假定原始输入信号的类型是任意的,而参考输入是频率为f的纯正弦波,即
式(3.2.1.1) 产生。即它们可分别表示为 式(3.2.1.2)SHAPE \* MERGEFORMAT
图(3.2.1)
,权的迭代用LMS算法,如下式所示,权的修正过程如下: 式(3.2.1.3)3.2.2 自适应陷波滤波器Matlab仿真分析
图6.3.2
上图可以看出经过正弦信号干扰的原始信号,在通过自适应陷波滤波器后,基本达到噪声消除的效果。上图中第一个图为原始信号,第二个为经过正弦信号干扰后的信号,第三个为消噪后的信号,第四个为误差信号曲线。
3.3 自适应预测
3.3.1 自适应预测的基本思想
要得到预测系数,必须获得输入信号采样值的相关函数矩阵,而实际上它不是一个定值,是时变的,所以就要求必须自适应调整预测系数,以保持最佳的预测增益。求相关函数的简单方法是,先采样并存储一个定长时间间隔的信号值,计算这些采样值的自相关函数,然后确定最佳的预测系数。预测器每隔规定的时间间隔更新依次存储的采样数据,并且每次将计算的预测参数发送到接收端。通过上述方法动态调整预测参数,在存储采样值时间间隔较长或每次存贮采样值个数较大的情况下,可以获得很大的预测增益。这就是自适应预测器的基本思想。