塔斯基对于“真理”的定义及其意义(4)
作者:佚名; 更新时间:2014-12-05
不总是能行的,因而从某种意义上说来它严格而且充分地规定的对象语言的真语句的类只是一种虚类或潜类;有人甚至因此而认为这个定义包含了形而上学的因素或带有严重的哲学暗含。[xxiii] 但是,正如无理数或虚数引入数学曾使得数学所能处理的对象有了革命性的扩充,使得数学有了更强和更一致地描述客观世界复杂现象的能力,并解除了毕达哥拉斯学派所曾有过的那类困惑,塔斯基在形式化语言中引入的真理定义也使我们可以在某种程度上克服只涉及语言表达式形式的语法的局限性,捕捉到语言表达式与其对象之间的某种普遍的和客观的关系——语句被所有对象满足的“真的”关系。这就使得我们对于作为一个整体的对象语言的最重要的一些特性(比如“一致性”、“完全性”等等)有了严格的实质性的把握,并因此得以超越某一个语言系统的局限,在不同的表达形式和直观内容的语言之间建立起更深刻的联系和通约,为语义的“真理”概念找到了更客观更逼近现实世界的基础(比如“模型”理论),具有了回答在语法或经验范围内无法回答的问题和表现更复杂丰富的逻辑关系的能力,填补了演绎科学方法论中的某些空白。
(1)从语义角度证明矛盾律与排中律
由于塔斯基的真理定义确切地决定了一个语言系统中所有真语句的类(Tr),并且由于任何一个语句要么被所有对象满足而真,要么不被任何对象满足而假,所以对任何一个语句x而言,或者xÎTr,或者xÎTr(矛盾律)而且,或者xÎTr,或者xÎTr(排中律)。[xxiv] 根据推论的定义,还可以证明从真语句只能推论出真语句。因此真语句的类是一个一致的而且完全的演绎系统。这就证明了被直观主义排斥的“排中律“至少在可以定义语义真的语言中是成立的,因而保证了数学中这个强有力的推理依据的合理性,悖论的出现不能归罪于排中律。
(2)区别了“真”与“可证明”
按照这个定义,如果一个形式化公理系统的公理都是真语句,那么从公理推出的定理(可证明句)也就都是真语句,因此可证明这个系统是一致的或协调的。但是,除了那些具有很基本的逻辑结构的演绎系统(如命题演算和狭谓词的演算)外,在相当大一类的数学学科的形式化语言中,并非所有的真语句都是定理或可证句。塔斯基在类演算中找到了一个句子,它和它的否定在类演算中都不可证。当然,这方面最著名的例子是哥德尔的不完全性定理。哥德尔通过他创造的配数法就能将符合有穷观点的元数学中的语法算术化,按照塔斯基的语义学的讲法,就是使元语言在对象语言中得到了解释,元语言并不比对象语言从本质上更丰富。这样的话,就总有可能在可以包括初等数论的形式系统P中能行地构造出一个自指的命题A,用普通语言表示就是:
A:A在P中不可证。
它和它的否定在P中都不可证。因此系统P是不完全的,或者是说在这样的元语言中不能给出一个实质上充分的真语句的定义,因为那样就会把说谎者悖论式的语句也包括进来。但是,如果元语言比对象语言从本质上更丰富,那么在对象语言P中的非决定句A就可以在元语言中被判定为是一个真语句(并不构成悖论)。[xxv] 因此塔斯基说:“……真理理论如此直接地导致了哥德尔的定理……,哥德尔在他的证明中显然受到了关于真理概念的某种直觉考虑的引导,虽然这个概念没有明确地出现在证明中。”[xxvi]
所以,在本质上更丰富的元语言中定义的“真”的概念就要比只使用对象语言中的逻辑手段就可精确定义的“证明”的概念在外延上更广,也就说,所有的可证句都是真语句,但有的真语句不是可证句;一致性可以用真理性来说明,但真理性不能只用一致性来说明。这个事实表明了语言系统中形式推理的局限性,同时表明了塔斯基的真理定义具有更深刻的构造能力,它对于解决形式系统的一些重要问题以及克服数学基础研究中的形式主义倾向具有重要意义。
(3)导致“模型”“推论”等概念的建立
塔斯基通过这个定义建立了形式化语言中的语义学方法,“通过使用语义学方法,我们能够确切地定义一些到目前为止只以直觉方式而被使用的重要的元数学概念——例如可定义性的概念或一个公理系统的模型的概念;并因此使我们能够对这些概念进行系统的研究。”[xxvii] 为了确切地回答本文一开始叙述的不同演绎系统(比如欧氏几何与非欧几何)之间具有真值联系的问题,一些逻辑学家曾力图以严格的方式定义“推论”(consequence),它的外延和内涵都要比“推导”(derivation)这个概念更丰富,后者只能说明“可证明”概念,但不能充分地说明“真理”(或真值)的概念。卡尔纳普在这方面做了很多工作,但由于他囿于语法范围,因而所给出的定义对于那些包含较多的非逻辑常项(extra-logical constants)的形式化语言就不适用,因而是实质上不充分的。塔斯基在定义“推论”时引入了语义学方法,运用已精确定义了的语义概念“满足”和“真”正确而且充分地定义了“模型”、“推论”这样一些在演绎科学中极重要的方法论概念。[xxviii]
科学的模型概念和推论概念准确而且充分地说明了表达形式和直观内容不同的演绎系统之间逻辑上或语义上的联系,使得我们进一步摆脱了某一个语言的形式的局限,得以在更抽象也更客观和完整的意义上来对比和把握这些语言系统的特性,而且这些用语义学方法定义的概念比单纯的语法概念更逼近人们具体的和创造性的思维和推理过程。
2.它对于语言哲学的意义
(1) 导致了理论语义学的建立
从前面的简单介绍中可看出:塔斯基在定义语义真的过程中,建立了一整套在形式化语言中科学地定义语义概念的方法,即对象语言与更丰富的元语言的区分和形式化公理化,建立(T)等式的格式,(往往递归地)定义语句函项,定义语句函项被一对象的无限序列所满足;然后利用已被定义的“满足”或其他语义概念来定义所需要的语义概念,比如“真‘、”指称“、”推衍“、”定义’、“模型”等等。其中最重要的思想就是,为了正确地使用和理解语言,必须区别语言的不同层次。为此,塔斯基在胡塞尔和涅斯乌斯基的工作的基础上建立了语义范畴的阶(the order of the category)和语义类型(semantical type)的概念,[xxix] 将语言从语义上分为层次;而正确和充分地定义语义概念的充要条件就是构造定义的元语言要比对象语言有更高阶的语义范畴。如果满足以上条件,就不会发生悖论。这也表明了悖论产生的根源并不[一定]是命题的自指或涉及到无穷,而[可以]是由于语义层次或范畴的混乱。因此,我们可以说塔斯基的真理定义从语义角度比罗素的逻辑类型论更自然而且更富有成果地解决了防止悖论的问题,导致了理论语义学的建立,为研究语言系统的特性提供了又一种有力的新工具。
(2) 纠正了早期的逻辑经验主义的某些错误论点
从前文(二·4)可看出,塔斯基的定义以极其严格的方式反驳了逻辑经验主义关于一切有意义命题的二分法,即重言式意义上的分析命题与要求经验证实的综合命题的二分法。塔斯基和哥德尔的工作表明,分析命题决不止是重言式或句法命题,比如哥德尔不完性定理中的命题A,利用真值表或只限于句法范围,都无法解释其真理性。[xxx] 这个定义还表明,“分析命题”的真理性要涉及到“对象”(当然不只是主观狭隘的经验对象),因此这类命题具有自己的内容和意义,相对于一个个具体语言系统有自己的特殊性和局限性。没有哪一种语言可以当作统一所有科学的代表绝对真理的语言。另外,这些分析命题的真假还与整个表达系统的结构特点和对象密不可分,而所有经验命题都必须利用这种不完全透明的形式系统来构造自己和表达意义,因此也就根本不存在完全独立于表达介质的“原子
(1)从语义角度证明矛盾律与排中律
由于塔斯基的真理定义确切地决定了一个语言系统中所有真语句的类(Tr),并且由于任何一个语句要么被所有对象满足而真,要么不被任何对象满足而假,所以对任何一个语句x而言,或者xÎTr,或者xÎTr(矛盾律)而且,或者xÎTr,或者xÎTr(排中律)。[xxiv] 根据推论的定义,还可以证明从真语句只能推论出真语句。因此真语句的类是一个一致的而且完全的演绎系统。这就证明了被直观主义排斥的“排中律“至少在可以定义语义真的语言中是成立的,因而保证了数学中这个强有力的推理依据的合理性,悖论的出现不能归罪于排中律。
(2)区别了“真”与“可证明”
按照这个定义,如果一个形式化公理系统的公理都是真语句,那么从公理推出的定理(可证明句)也就都是真语句,因此可证明这个系统是一致的或协调的。但是,除了那些具有很基本的逻辑结构的演绎系统(如命题演算和狭谓词的演算)外,在相当大一类的数学学科的形式化语言中,并非所有的真语句都是定理或可证句。塔斯基在类演算中找到了一个句子,它和它的否定在类演算中都不可证。当然,这方面最著名的例子是哥德尔的不完全性定理。哥德尔通过他创造的配数法就能将符合有穷观点的元数学中的语法算术化,按照塔斯基的语义学的讲法,就是使元语言在对象语言中得到了解释,元语言并不比对象语言从本质上更丰富。这样的话,就总有可能在可以包括初等数论的形式系统P中能行地构造出一个自指的命题A,用普通语言表示就是:
A:A在P中不可证。
它和它的否定在P中都不可证。因此系统P是不完全的,或者是说在这样的元语言中不能给出一个实质上充分的真语句的定义,因为那样就会把说谎者悖论式的语句也包括进来。但是,如果元语言比对象语言从本质上更丰富,那么在对象语言P中的非决定句A就可以在元语言中被判定为是一个真语句(并不构成悖论)。[xxv] 因此塔斯基说:“……真理理论如此直接地导致了哥德尔的定理……,哥德尔在他的证明中显然受到了关于真理概念的某种直觉考虑的引导,虽然这个概念没有明确地出现在证明中。”[xxvi]
所以,在本质上更丰富的元语言中定义的“真”的概念就要比只使用对象语言中的逻辑手段就可精确定义的“证明”的概念在外延上更广,也就说,所有的可证句都是真语句,但有的真语句不是可证句;一致性可以用真理性来说明,但真理性不能只用一致性来说明。这个事实表明了语言系统中形式推理的局限性,同时表明了塔斯基的真理定义具有更深刻的构造能力,它对于解决形式系统的一些重要问题以及克服数学基础研究中的形式主义倾向具有重要意义。
(3)导致“模型”“推论”等概念的建立
塔斯基通过这个定义建立了形式化语言中的语义学方法,“通过使用语义学方法,我们能够确切地定义一些到目前为止只以直觉方式而被使用的重要的元数学概念——例如可定义性的概念或一个公理系统的模型的概念;并因此使我们能够对这些概念进行系统的研究。”[xxvii] 为了确切地回答本文一开始叙述的不同演绎系统(比如欧氏几何与非欧几何)之间具有真值联系的问题,一些逻辑学家曾力图以严格的方式定义“推论”(consequence),它的外延和内涵都要比“推导”(derivation)这个概念更丰富,后者只能说明“可证明”概念,但不能充分地说明“真理”(或真值)的概念。卡尔纳普在这方面做了很多工作,但由于他囿于语法范围,因而所给出的定义对于那些包含较多的非逻辑常项(extra-logical constants)的形式化语言就不适用,因而是实质上不充分的。塔斯基在定义“推论”时引入了语义学方法,运用已精确定义了的语义概念“满足”和“真”正确而且充分地定义了“模型”、“推论”这样一些在演绎科学中极重要的方法论概念。[xxviii]
科学的模型概念和推论概念准确而且充分地说明了表达形式和直观内容不同的演绎系统之间逻辑上或语义上的联系,使得我们进一步摆脱了某一个语言的形式的局限,得以在更抽象也更客观和完整的意义上来对比和把握这些语言系统的特性,而且这些用语义学方法定义的概念比单纯的语法概念更逼近人们具体的和创造性的思维和推理过程。
2.它对于语言哲学的意义
(1) 导致了理论语义学的建立
从前面的简单介绍中可看出:塔斯基在定义语义真的过程中,建立了一整套在形式化语言中科学地定义语义概念的方法,即对象语言与更丰富的元语言的区分和形式化公理化,建立(T)等式的格式,(往往递归地)定义语句函项,定义语句函项被一对象的无限序列所满足;然后利用已被定义的“满足”或其他语义概念来定义所需要的语义概念,比如“真‘、”指称“、”推衍“、”定义’、“模型”等等。其中最重要的思想就是,为了正确地使用和理解语言,必须区别语言的不同层次。为此,塔斯基在胡塞尔和涅斯乌斯基的工作的基础上建立了语义范畴的阶(the order of the category)和语义类型(semantical type)的概念,[xxix] 将语言从语义上分为层次;而正确和充分地定义语义概念的充要条件就是构造定义的元语言要比对象语言有更高阶的语义范畴。如果满足以上条件,就不会发生悖论。这也表明了悖论产生的根源并不[一定]是命题的自指或涉及到无穷,而[可以]是由于语义层次或范畴的混乱。因此,我们可以说塔斯基的真理定义从语义角度比罗素的逻辑类型论更自然而且更富有成果地解决了防止悖论的问题,导致了理论语义学的建立,为研究语言系统的特性提供了又一种有力的新工具。
(2) 纠正了早期的逻辑经验主义的某些错误论点
从前文(二·4)可看出,塔斯基的定义以极其严格的方式反驳了逻辑经验主义关于一切有意义命题的二分法,即重言式意义上的分析命题与要求经验证实的综合命题的二分法。塔斯基和哥德尔的工作表明,分析命题决不止是重言式或句法命题,比如哥德尔不完性定理中的命题A,利用真值表或只限于句法范围,都无法解释其真理性。[xxx] 这个定义还表明,“分析命题”的真理性要涉及到“对象”(当然不只是主观狭隘的经验对象),因此这类命题具有自己的内容和意义,相对于一个个具体语言系统有自己的特殊性和局限性。没有哪一种语言可以当作统一所有科学的代表绝对真理的语言。另外,这些分析命题的真假还与整个表达系统的结构特点和对象密不可分,而所有经验命题都必须利用这种不完全透明的形式系统来构造自己和表达意义,因此也就根本不存在完全独立于表达介质的“原子