物理学理论研究(7)
作者:佚名; 更新时间:2014-12-10
位置)。温度的高低反映了电子偏离稳定轨道程度的大小,单个原子(分子)也有温度。电子偏离圆形轨道的程度越大,表明该原子的温度越高,电子裂变后放出的能量也越大。所以温度升高时物体发出的电磁辐射向短波方向移动。对于温度一定的物体来说,它内部包含了大量的原子,这些原子中的电子由于受到的扰动大小不同,它们裂变放出光子的质量也不同,但大致满足正态分布,即发出的光子中能量特别大的和能量特别小的都是极少数。由前面的论述我们知道,电子在原子核中的能量大小并非定值:电子离核越远电势能越大,离核越近电势能越小。与宏观电荷一样,电子的电势能是其与原子核距离的函数,电子和原子核间的作用力服从库仑定律。温度越高,电子离核越远,电势能也越大,因而也越容易失去;温度越低,电子离核越近,电势能也越小,也越不容易失去。
什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。
再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。
8.电子的质量-结合能曲线表
氢原子和类氢原子电子都有相似的轨道,其光谱都可以用玻尔理论来描述,这说明电子质量“幻数”的确存在。那么,决定电子裂变的因素是否只有原子核呢?不是的!如果是的话,那么所有的元素都应该有相同或相似的光谱,然而事实并非如此。在多电子原子中,一个电子是否裂变取决于原子核和其它电子的共同作用。内层电子的存在,在一定程度上屏蔽了原子核对外层电子的作用,而外层电子的存在,也对内层电子的裂变有一定的影响。正因为如此,多电子原子光谱比氢原子和类氢原子光谱复杂的多。要想分析多电子原子光谱规律,首先必须弄清楚电子的质量--结合能曲线表。一般来说,电子质量越大结合能越小,电子质量越小结合能越大。但这条曲线并非平滑曲线,总有特定能量的电子的结合能非常大,比邻近质量的电子的结合能高出许多,我们把这些结合能非常大的点对应的质量程作电子质量“幻数”。 电子质量“幻数”的存在,充分证明了电子内部电荷分布是不均匀的,电子有一定的内部结构。如果我们能够准确地绘出电子的质量--结合能曲线表,那么我们就在解决原子光谱问题上迈出了决定性的一步。同时,电子质量“幻数”的存在,也造成了元素周期律,在多电子原子中,电子总是按照一定的规律排布的,不同轨道上的电子的质量不同,内层电子的质量总是小于外层电子的质量,内层电子的结合能总是大于外层电子的结合能;处于基态时,各电子的质量总是对应于电子质量----结合能曲线上的极大点。我们坚信,如果人类绘出了电子质量----结合能曲线表,研究原子光谱问题就象小学生搭积木一样简单,对于元素周期律来说,根据电子质量----结合能曲线表,我们可以很容易地排出各电子的轨道。
什么是热现象呢?这似乎是不是问题的问题。人们通常认为:热现象是大量分子无规则运动的反映,温度越高分子的平均速率越大,温度越低分子的平均速率越小。果真如此吗?我们知道,太阳时刻不停地向外抛射高能粒子,这些粒子的速度接近光速,宇宙中其它恒星也在不停地向外抛射高能粒子,所以在宇宙空间任何地方,都有许多高能粒子正在做杂乱无章的运动,这些粒子的速度通常都接近光速或亚光速。这样看来宇宙空间的温度应该很高(至少比恒星内部高),宇宙空间应该是很明亮的。但事实上,宇宙空间是漆黑的一团,温度只超过绝对零度一点。这说明粒子运动速度大未必温度就很高,物体的温度不是由组成它的原子(分子)的平均运动速度决定的。温度升高,原子(分子)的平均速度增大。但反过来,原子(分子)的平均速度增大并不意味着温度升高。我们知道,只要物体的温度在绝对零度以上就会向外辐射电磁波,而物质向外辐射电磁波的原因是电子受到扰动后在静电力作用下放出光子,并且光子受到的扰动越大放出的光子能量也越大,相应的物体的温度也越高。从这个意义上来说,原子是储存热量的最小单位,单个原子也有温度,因为它可以储存热能。但单个的带电粒子如质子、电子在不受外界任何扰动时,即便速度再大也不会向外界释放能量,因此它们都不能储存热能,因而也没有温度。应该看到,原子(分子)的高速运动所具有的能量仅仅是动能而不是热能,和宏观物体一样,速度大未必温度高。宏观物体的速度与其温度无关,原子(分子)也是如此。一个原子(分子)的速度比其它原子(分子)的速度大,只能说明它的动能大,储存的热能未必就多。热能仅储存于原子核和电子形成的原子体系中,两者中缺少任何一个都不能储存热能。在日常生活中我们用红外线(微波)加热而不用紫外线,紫外线的热效应远远小于红外线(微波)。这是因为红外线(微波)光子的质量小,和原子中电子的结合力大(包括内层电子),而紫外线和原子中电子的结合力小(它几乎不与内层电子作用),所以红外线往往容易被物体吸收,其热效应当然比紫外线强。
再进一步考虑,什么是热现象呢?热现象和温度之间有什么关系呢?我们认为:对一个物体而言,倘若它储存了热能它就有温度,并且它储存的热能越多它的温度就越高,反之则温度越低;倘若物体没有储存热能则它就没有温度或者说它的温度是绝对零度;倘若物体不能储存热能,则用温度来衡量该物体是没有意义的。我们知道,原子是储存热能的最基本单位,原子的热能实际上是储存在电子中的。单独的原子核、单独的电子都不能储存热能,所以单独的原子核、单独的电子都没有温度。同样的道理,光子也不能储存热能,它仅仅是热能的载体,因为单独的原子可以储存热能,所以单独的原子有温度,但由于单独的光子不能储存热能,所以单独的光子没有温度,不同能量的光子之间只有能量的差异而没有温度的差异,用温度来衡量光子是毫无意义的。倘若光子也有温度,则在太阳系中离太阳越近的空间温度就应该越高,离太阳越远的空间温度就应该越低,事实上完全不是这么回事。
8.电子的质量-结合能曲线表
氢原子和类氢原子电子都有相似的轨道,其光谱都可以用玻尔理论来描述,这说明电子质量“幻数”的确存在。那么,决定电子裂变的因素是否只有原子核呢?不是的!如果是的话,那么所有的元素都应该有相同或相似的光谱,然而事实并非如此。在多电子原子中,一个电子是否裂变取决于原子核和其它电子的共同作用。内层电子的存在,在一定程度上屏蔽了原子核对外层电子的作用,而外层电子的存在,也对内层电子的裂变有一定的影响。正因为如此,多电子原子光谱比氢原子和类氢原子光谱复杂的多。要想分析多电子原子光谱规律,首先必须弄清楚电子的质量--结合能曲线表。一般来说,电子质量越大结合能越小,电子质量越小结合能越大。但这条曲线并非平滑曲线,总有特定能量的电子的结合能非常大,比邻近质量的电子的结合能高出许多,我们把这些结合能非常大的点对应的质量程作电子质量“幻数”。 电子质量“幻数”的存在,充分证明了电子内部电荷分布是不均匀的,电子有一定的内部结构。如果我们能够准确地绘出电子的质量--结合能曲线表,那么我们就在解决原子光谱问题上迈出了决定性的一步。同时,电子质量“幻数”的存在,也造成了元素周期律,在多电子原子中,电子总是按照一定的规律排布的,不同轨道上的电子的质量不同,内层电子的质量总是小于外层电子的质量,内层电子的结合能总是大于外层电子的结合能;处于基态时,各电子的质量总是对应于电子质量----结合能曲线上的极大点。我们坚信,如果人类绘出了电子质量----结合能曲线表,研究原子光谱问题就象小学生搭积木一样简单,对于元素周期律来说,根据电子质量----结合能曲线表,我们可以很容易地排出各电子的轨道。